• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PARAMETRIC EXPLORATION OF AUTOMATED FABRICATION AND ANODIC BONDING OF CPS FOR LHP APPLICATIONS

PARIMI, SRINIVAS 17 April 2003 (has links)
No description available.
2

A Study of Plasma-Induced Surface Roughness and Ripple Formation during Silicon Etching in Inductively Coupled Chlorine Plasmas / 誘導結合塩素プラズマを用いたシリコンエッチングにおけるプラズマ誘起表面ラフネスとリップル形成に関する研究

Nakazaki, Nobuya 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19687号 / 工博第4142号 / 新制||工||1639(附属図書館) / 32723 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 斧 髙一, 教授 稲室 隆二, 教授 青木 一生 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

HYBRID X-BAND POWER AMPLIFIER DEVELOPMENT FOR 3D-IC PHASED ARRAY MODULE

XU, PENG 17 April 2003 (has links)
No description available.
4

Deep-trench Rie Optimization For High Performance Mems Microsensors

Aydemir, Akin 01 August 2007 (has links) (PDF)
This thesis presents the optimization of deep reactive ion etching process (DRIE) to achieve high precision 3-dimensional integrated micro electro mechanical systems (MEMS) sensors with high aspect ratio structures. Two optimization processes have been performed to achieve 20 &amp / #956 / m depth for 1 &amp / #956 / m opening for a dissolved wafer process (DWP) and to achieve 100 &amp / #956 / m depth for 1 &amp / #956 / m opening for silicon-on-glass (SOG) process. A number of parameters affecting the etch rate and profile angle are investigated, including the step times, etch step pressure, platen power, and electrode temperature. Silicon etch samples are prepared and processed in METU-MET facilities to understand and optimize the DRIE process parameters that can be used for the production of MEMS gyroscopes and accelerometers. The etch samples for DWP are masked using a photoresist, Shipley S1813. After the optimization process, vertical trench profiles are achieved with minimum critical dimension loss for trench depths up to 20 &amp / #956 / m. Since the selectivity of the resist is not sufficient for 100 &amp / #956 / m deep trench etch process, silicon dioxide (SiO2) is used as the mask for this process. At the end of the optimization processes, more than 100 &amp / #956 / m depth for 1 &amp / #956 / m opening with almost vertical sidewalls are achieved. In summary, this study provides an extensive understanding of the DRIE process for successful implementations of integrated MEMS sensors.
5

Développement de procédés de gravure à base de plasmas réactifs pulsés Pulsed plasmas for etch applications / Pulsed Plasmas for Etch Applications

Haass, Moritz 06 November 2012 (has links)
Du fait de la réduction des dimensions en microélectronique, les procédés de gravure par plasmas ne peuvent plus satisfaire aux exigences de l'industrie. De nouvelles stratégies sont en cours de développement. Ce travail consiste en l'étude de plasmas pulsés de HBr/O2 comme une alternative pour la gravure du silicium. Divers diagnostics dans un réacteur industriel 300 mm sont utilisés pour caractériser le plasma tandis que la gravure du silicium est étudiée par XPS et par microscopie électronique. Lorsque le plasma est pulsé à faible rapport cyclique, sa température et sa dissociation sont fortement réduits. Le flux de Br radicalaire par rapport à la période ON du plasma augmente tandis que l'influence du radical O diminue, ce qui conduit à une amélioration de la sélectivité par rapport au SiO2 et à une gravure plus homogène. Les profils des structures gravées peuvent être contrôlés par la formation de la couche de passivation sur les flancs dépendant également du rapport cyclique. / The continuous downscaling in microelectronics imposes increasing demands on the plasma processes and traditional ways for process optimization reach their limits. New strategies are needed and innovations in the field of plasma processes are being developed: e.g. the use of pulsed plasmas. In this thesis, a pulsed HBr/O2 etch plasma is studied. Various in-situ diagnostics are used to characterize pulsed plasmas in an industrial 12” etch reactor. The silicon etching is investigated by XPS and electron microscopy. We show that the plasma dissociation and temperature are reduced if the plasma is pulsed at low duty cycles. The Br radical flux with respect to the on-time of the plasma is increased and the influence of the O radical is decreased, leading to enhanced time compensated silicon etch rates, a higher selectivity towards SiO2 and a more homogeneous etching. The pattern profiles can be controlled via the sidewall passivation layer formation that is closely linked to the duty cycle.
6

A Novel Method for the Bottom-Up Microstructuring of Silicon and Patterning of Polymers

Schutzeichel, Christopher 28 June 2021 (has links)
The aim of this work was the development of a method for the generation of surface features on n-type silicon samples with deeply buried p-implants, in the form of heterogeneities aligned directly above the buried implants. This task was motivated by the realisation of a simpler process for the formation of superjunction transistors, which currently require the repeated creation of the same implantation structure over multiple steps of photolithography These lithography steps can be potentially replaced, if a suitable process for the self-alignment in accordance to the buried implants can be found. The work on this goal was separated into three parts: the analysis of samples for suitable surface properties, the generation of surface heterogeneities using such a property and the analysis of the mechanism for the used process of contrast generation. Within this doctoral thesis, a before unseen method of selective etching on silicon was discovered and investigated. Hence, the overall aim of this work was successfully achieved. • Samples containing buried p-implants inside a n-type silicon substrate were characterised with regard to various properties. Of these, the through-sample resistance showed a significant variation in accordance to the buried implants also through a homogeneous epitaxial layer. • Various methods aimed at the usage of the resistance variation in order to generate a surface heterogeneity through electrodeposition failed to enable a suitable process. Instead, another method was found, which enables the replication of the implant structure via selective etching. This novel process enables the lithography free patterning of the substrates through a simple alkaline etch process performed under illumination. This results in a surface heterogeneity as an alteration of the sample topography combined with a material contrast due to the formation of an in-situ SiO2 etch mask. This material variation can also be used for the selective deposition of polymers, enabling further processing of the etched samples. • For this new method, named Light Induced Selective Etching (LISE), a mechanism underlying the selectivity was proposed and through a number of experiments. In essence, the illumination during the etching process produces a flux of photogenerated electrons directed from the buried implants toward the surface, which increase the negative surface charge in the areas above these implants. The locally increased surface charge causes a local protection of the native silicon oxide layer against the alkaline etching, leading to the structuring of the substrate. In essence, this novel method allows for the previously unreported self-adjusted structuring of silicon based on deeply buried implant structures. In general, even the characterisation of such implant structures is difficult, whereas this method allows for structuring with regard to such buried structures with a very simple setup of only an etchant solution and a suitable light source. With regard to the introduction and motivation of this thesis, this process can possibly be applied for the intended purpose of creating a self-aligned resist in order to replace repeating lithography steps. This is the case in particular in combination with polymer deposition, as shown in the last part of the results. Certain limitations, such as the resolution limit and dimensional size increase exist, but can be circumvented by appropriate device design and further optimisation of the process parameters. Furthermore, the LISE process appears applicable for the manufacturing of MEMS and MOEMS devices, as the typical feature sizes in these cases fit well to the achieved resolution of the LISE process. For devices needing a certain implant structure in combination with a corresponding topography, the new method allows for the elimination of at least one lithography step, including the necessary substeps such as alignment and measurement. Accordingly, LISE has the potential of simplifying the manufacturing process, enabling better and cheaper devices.
7

Nasschemische Siliciumbehandlung in Flusssäure-haltigen Lösungen mit den Oxidationsmitteln Wasserstoffperoxid und Ozon

Gondek, Christoph 26 June 2017 (has links) (PDF)
Die Siliciumauflösung in Flusssäure-Wasserstoffperoxid- und Flusssäure-Ozon-Lösung ist aufgrund der, aus der Oxidation des Siliciums, formal resultierenden Reaktionsprodukte Wasser und Sauerstoff interessant. Der Auflösungsprozess, speziell die Oxidation des Siliciums / Elektronenlochinjektion ins Siliciumvalenzband, wird – verglichen mit anderen Ätzsystemen für Silicium – massiv kinetisch gehemmt. Ätzprozesse auf Basis dieser Mischungen sind hinsichtlich der geringen bzw. moderaten erzielbaren Siliciumabtragsraten (rSi < 0,02 nm s-1 mit Rissaufweitung in Flusssäure-Wasserstoff-peroxid-Lösungen bzw. rSi < 0,61 nm s-1 mit Oberflächenpolitur in Flusssäure-Ozon-Lösungen) wenig effektiv. Eine Erhöhung der Siliciumabtragsraten gelingt prinzipiell durch die Erhöhung der Konzentrationen siliciumoxidierender Spezies in der Silicium / Elektrolyt-Grenzfläche oder durch Zufügen geeigneter grenzflächenaktiver Elektronenüberträgerspezies. In stark sauren Lösungen wird der Elektronentransfer zusätzlich durch stabilisierende Wasserstoffaustauschprozesse inhibiert. Die Mischungen sind zur Reinigung von Siliciumwaferoberflächen oder feinteiligem Silicium geeignet.
8

Investigation of physical and chemical interactions during etching of silicon in dual frequency capacitively coupled HBr/NF3 gas discharges / Untersuchung physikalischer und chemischer Wechselwirkungen beim Si-Ätzen in zweifrequenzangeregten kapazitiv gekoppelten HBr/NF3 Gasentladungen

Reinicke, Marco 17 December 2009 (has links) (PDF)
High aspect ratio silicon etching used for DRAM manufacturing still remains as one of the biggest challenges in semiconductor fabrication, requiring well understood and characterized process fundamentals. In this study, physical and chemical interactions during etching silicon in capacitively coupled plasma discharges were investigated in detail for different HBr/NF3 mixed chemistries for single frequency as well as dual frequency operation and medium discharge pressures inside an industrial MERIE CCP reactor typically used for DRAM fabrication. Utilization of the dual frequency concept for separate control of ion energy and ion flux, as well as the impact on discharge properties and finally on etching at relevant substrate surfaces were studied systematically. The complex nature of multi frequency rf sheaths was both analyzed experimentally by applying mass resolved ion energy analysis, and from simulation of ion energy distributions by using a Hybrid Plasma Sheath Model. Discharge composition and etch processes were investigated by employing standard mass spectrometry, Appearance Potential Mass Spectrometry, Quantum Cascade Laser Absorption Spectroscopy, rf probe measurements, gravimetry and ellipsometry. An etch model is developed to explain limitations of silicon etching in HBr/NF3 discharges to achieve highly aniostropic etching. / Siliziumätzen mit hohen Aspektverhältnissen zur Herstellung von DRAM-Speicherstrukturen stellt nach wie vor eine der größten Herausforderungen in der Halbleiterherstellung dar und erfordert ein grundlegendes Prozessverständnis. Diese Studie beinhaltet eine umfassende und detaillierte Untersuchung physikalischer und chemischer Wechselwirkungen von Siliziumätzprozessen in kapazitiv gekoppelten HBr/NF3-Gasentladungen in einem kommerziellen, typischerweise für die DRAM-Fertigung eingesetzten MERIE CCP Reaktor mit Ein- und Zweifrequenzanregung bei mittleren Entladungsdrücken. Die Anwendung eines Zweifrequenzkonzeptes zur separaten Kontrolle von Ionenenergie und Ionenstromdichte, als auch deren Einfluss auf die Entladungseigenschaften und letztendlich auf das Ätzverhalten auf relevanten Substratoberflächen wurden systematisch untersucht. Die komplexe Natur von mehrfrequenzangeregten HF-Randschichten wurde sowohl experimentell über eine Anwendung von massenaufgelöster Ionenenergieanalyse als auch rechnerisch über Simulationen von Ionenenergieverteilungsfunktionen mit Hilfe eines hybriden Plasmarandschichtmodells analysiert. Gaszusammensetzungen verschiedener Entladungen und Ätzprozesse wurden mit Hilfe von Standard-Massenspektrometrie, Schwellwert-Massenspektrometrie, Quantenkaskaden-Laserabsorptionsspektroskopie, HF-Sondenmessungen, Gravimetrie und Ellipsometrie charakterisiert. Eine neuartige Modellvorstellung zum Siliziumätzen in HBr/NF3-Entladungsgemischen liefert eine plausible Erklärung für die Limitierung der Ätzrate zum Erreichen eines hoch anisotropen Ätzverhaltens.
9

Cellules solaires silicium ultra-minces nanostructurées : conception électro-optique et développement technologique

Champory, Romain 13 December 2016 (has links)
Les cellules photovoltaïques en couches minces de silicium cristallin sont des candidates prometteuses pour les développements futurs de l’industrie photovoltaïque, au travers des réductions de coûts attendues et des applications dans les modules souples. Pour devenir compétitive, la filière des couches minces de silicium monocristallin doit se différencier des filières classiques. Elle est donc généralement basée sur l’épitaxie de couches de haute qualité puis sur le transfert de ces couches vers un support mécanique pour terminer la fabrication de la cellule et réutiliser le premier substrat de croissance. Le but de cette thèse est de trouver les associations technologiques qui permettent de réaliser des cellules photovoltaïques en couches minces et ultra-minces de silicium monocristallin à haut-rendement. Les travaux présentés s’articulent selon deux axes principaux : le développement et la maîtrise de procédés technologiques pour la fabrication de cellules solaires en couches minces et l’optimisation des architectures de cellules minces haut-rendement.Dans ce cadre de travail, les développements des techniques de fabrication ont d’abord concerné la mise au point de procédés de transfert de couches minces : une technologie basse température de soudage laser et un soudage par recuit rapide haute température. Afin d’augmenter le rendement de conversion, nous avons développé des structurations de surface utilisant les concepts de la nano-photonique pour améliorer le pouvoir absorbant des couches minces. Avec une lithographie interférentielle à 266 nm et des gravures sèches par RIE et humides par TMAH (Tetramethylammonium Hydroxide), nous pouvons réaliser des cristaux photoniques performants sur des couches épitaxiées de silicium. Finalement, nous avons pu concevoir des architectures optimisées de cellules solaires minces à homo-jonction de silicium et à hétéro-jonction silicium amorphe / silicium cristallin plus performantes électriquement, grâce aux outils de simulation électro-optique. Notre approche théorique nous a aussi conduits à expliciter les phénomènes électriques propres aux couches minces, et à démontrer tout le potentiel des cellules photovoltaïques minces en silicium monocristallin. / Thin-film crystalline silicon solar cells are promising candidates for future developments in the photovoltaic industry, through expected costs reductions and applications in flexible modules. To be competitive, thin-film monocrystalline silicon solar cell technology must differentiate itself from conventional ones. It is generally based on the epitaxy of high-quality layers and then on the transfer of these layers onto a mechanical support to complete the manufacture of the cell and reuse the growth substrate. The aim of this thesis is to find the technological associations that make it possible to realize high-efficiency photovoltaic cells from thin and ultra-thin layers of monocrystalline silicon. The work presented focuses on two main axes: the development and control of technological processes for the fabrication of thin-film solar cells and the optimization of high-performance thin-cell architectures.In this framework, the development of manufacturing techniques began with the development of thin-film transfer processes: low temperature laser welding technology and high temperature fast annealing welding technology. In order to increase conversion efficiency, we have developed surface patterns using the nano-photonics concepts to improve the absorbency of thin films. With an interferential lithography at 266 nm and dry etching by RIE and wet etching by TMAH (Tetramethylammonium Hydroxide), we can produce high-performance photonic crystals on epitaxial layers of silicon. Finally, we were able to design optimized architectures of thin solar cells with homo-junction of silicon and hetero-junction amorphous silicon / crystalline silicon more efficient electrically, thanks to electro-optical simulation tools. Our theoretical approach has also led us to explain the electrical phenomena specific to thin films, and to demonstrate the full potential of thin photovoltaic cells made of monocrystalline silicon.
10

Nasschemische Siliciumbehandlung in Flusssäure-haltigen Lösungen mit den Oxidationsmitteln Wasserstoffperoxid und Ozon

Gondek, Christoph 19 May 2017 (has links)
Die Siliciumauflösung in Flusssäure-Wasserstoffperoxid- und Flusssäure-Ozon-Lösung ist aufgrund der, aus der Oxidation des Siliciums, formal resultierenden Reaktionsprodukte Wasser und Sauerstoff interessant. Der Auflösungsprozess, speziell die Oxidation des Siliciums / Elektronenlochinjektion ins Siliciumvalenzband, wird – verglichen mit anderen Ätzsystemen für Silicium – massiv kinetisch gehemmt. Ätzprozesse auf Basis dieser Mischungen sind hinsichtlich der geringen bzw. moderaten erzielbaren Siliciumabtragsraten (rSi < 0,02 nm s-1 mit Rissaufweitung in Flusssäure-Wasserstoff-peroxid-Lösungen bzw. rSi < 0,61 nm s-1 mit Oberflächenpolitur in Flusssäure-Ozon-Lösungen) wenig effektiv. Eine Erhöhung der Siliciumabtragsraten gelingt prinzipiell durch die Erhöhung der Konzentrationen siliciumoxidierender Spezies in der Silicium / Elektrolyt-Grenzfläche oder durch Zufügen geeigneter grenzflächenaktiver Elektronenüberträgerspezies. In stark sauren Lösungen wird der Elektronentransfer zusätzlich durch stabilisierende Wasserstoffaustauschprozesse inhibiert. Die Mischungen sind zur Reinigung von Siliciumwaferoberflächen oder feinteiligem Silicium geeignet.:1. Motivation und Problemstellung 5 2. Halbleiterrelevante Eigenschaften von Silicium 9 2.1 Siliciumoberflächen 9 2.2 Silicium als Halbleiter 14 2.3 Silicium in Elektrolyt-Lösungen 17 2.3.1 Silicium / Elektrolyt-Kontakt 17 2.3.2 Silicium in Flusssäurelösungen 20 2.4 Oxidation von Siliciumoberflächen in Elektrolytlösungen 23 2.4.1 Elektronentransfer beim Silicium / Elektrolyt-Kontakt 24 2.4.2 Chemische Oxidation von Silicium 27 3. Siliciumätzverfahren 32 4. Nasschemische Siliciumauflösung in wässrigen Flusssäure-haltigen Lösungen 35 4.1 Elektrochemische Siliciumauflösung 37 4.2 Außenstromlose Siliciumauflösung in sauren Lösungen 41 4.2.1 Stromlose elektrochemische Siliciumauflösung 41 4.2.2 Metall-assistierte Siliciumauflösung 44 4.2.3 Chemische Siliciumauflösung 48 4.2.4 Ausgewählte Abtragsraten zur sauren nasschemischen Siliciumbehandlung 49 4.3 Anisotropie-Effekte bei der nasschemischen Siliciumauflösung 51 5. Silicium in Flusssäure-Wasserstoffperoxid-basierten Ätzlösungen 54 5.1 Silicium in wässrigen Flusssäure-Wasserstoffperoxid-Lösungen 54 5.1.1 Reaktivitäten wässriger Flusssäure-Wasserstoffperoxid-Lösungen gegenüber Silicium 55 5.1.2 Formalkinetische Untersuchungen des Ätzprozesses 58 5.1.3 Eigenschaften der Siliciumoberflächen: Morphologie und Bindungssituation 64 5.1.4 Poröses Silicium in wässrigen Flusssäure-Wasserstoffperoxid-Lösungen (außenstromlos) 66 5.2 Stimulierung des Prozesses der Siliciumauflösung in wässrigen Flusssäure-Wasserstoffperoxid-Lösungen 71 5.2.1 Auswirkungen ausgewählter „Verunreinigungen“ der Ätzlösungen 73 5.2.2 Stimulierung durch zusätzliche Oxidationsmittel 74 5.2.3 Stimulierung durch potenzielle Elektronenüberträger 80 5.3 Silicium in Flusssäure-Wasserstoffperoxid-Schwefelsäure-Lösungen 90 5.3.1 Eigenschaften von Flusssäure-Wasserstoffperoxid-Schwefelsäure-Lösungen 90 5.3.2 Reaktivitäten von Flusssäure-Wasserstoffperoxid-Schwefelsäure-Lösungen 94 5.3.3 Eigenschaften der erzeugten Siliciumoberflächen 101 5.4 Silicium in Flusssäure-Wasserstoffperoxid-Salzsäure-Lösungen 106 5.5 Oxidation der Siliciumoberfläche in Wasserstoffperoxid-basierten Lösungen 109 5.6 Schlussfolgerungen zur Siliciumauflösung in Flusssäure-Wasserstoffperoxid-basierten Ätzlösungen 113 5.7 Anwendungspotenziale Flusssäure-Wasserstoffperoxid-basierter Ätzlösungen 116 6. Silicium in wässrigen Flusssäure-Ozon-basierten Ätzlösungen 123 6.1 Silicium in Flusssäure-Ozon-Lösungen 129 6.2 Silicium in Flusssäure-Ozon-Schwefelsäure-Lösungen 137 6.3 Silicium in Ozon-durchleiteten Flusssäure-Salzsäure-Lösungen 141 6.4 Oxidation der Siliciumoberfläche in Ozon-haltigen Lösungen 147 6.5 Schlussfolgerungen zur Siliciumauflösung in Flusssäure-Ozon-basierten Ätzlösungen 152 6.6 Anwendungspotenziale Flusssäure-Ozon-basierter Ätzlösungen 158 7. Zusammenfassung 162 8. Experimenteller Teil 166 8.1 Grundlagen 166 8.2 Chemikalien und Siliciumsubstrate 167 8.3 Charakterisierungsmethoden und Geräte 171 8.4 Konzentrationsbestimmungen in wässrigen Lösungen 174 8.5 Ätzlösungen und Abtragsraten 177 8.6 Daten zu den einzelnen Versuchen 180 8.6.1 Flusssäure-Wasserstoffperoxid-haltige Lösungen 180 8.6.2 Flusssäure-Ozon-haltige Lösungen 191 8.6.3 Daten der XPS-Untersuchungen 198 8.6.4 Reinigung von Siliciumsubstraten 208 9. Anhang 211 A Abkürzungsverzeichnis 211 B Literaturverzeichnis 212 C Tabellen / Literaturvergleichswerte 227 E Sonstiges 233 E.1 Eidesstattliche Erklärung 233 E.2 Publikationen 234 E.4 Danksagung 240

Page generated in 0.0581 seconds