• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 8
  • Tagged with
  • 33
  • 33
  • 18
  • 16
  • 16
  • 16
  • 16
  • 13
  • 10
  • 10
  • 8
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen zur Sauerstoffausscheidung in hoch bordotiertem Silicium

Zschorsch, Markus 24 July 2009 (has links) (PDF)
Die Sauerstoffausscheidung in Silicium wird durch die Höhe der Bordotierung beeinflusst. Mit dem Ziel der Aufklärung der Mechanismen bei der Ausscheidung wurden verschiedene physikalische Messmethoden angepasst und ein breiter Borkonzentrationsbereich charakterisiert. Es wurden die frühen Phasen der Ausscheidungsbildung sowie Komplexbildung als auch das Wachstum der Sauerstoffausscheidungen untersucht. Mithilfe einer neuen Methodenkombination aus alkalischem Ätzen und FTIR-Spektroskopie konnten verschiedene Bor-Komplexe nachgewiesen werden. Die Erkenntnisse über deren Existenz sowie Kinetik wurden numerisch umgesetzt. Mittels Kleinwinkel-Neutronenstreuung wurden erstmals in den frühen Phasen der Sauerstoffausscheidung deren Form und Größe in Abhängigkeit der Borkonzentration bestimmt. Die physikalischen Prozesse, die zu einem beschleunigten als auch anomalen Ausscheidungsverhalten in Abhängigkeit der Borkonzentration führen, konnten teilweise aufgeklärt werden.
2

Untersuchungen zur Sauerstoffausscheidung in hoch bordotiertem Silicium

Zschorsch, Markus 14 December 2007 (has links)
Die Sauerstoffausscheidung in Silicium wird durch die Höhe der Bordotierung beeinflusst. Mit dem Ziel der Aufklärung der Mechanismen bei der Ausscheidung wurden verschiedene physikalische Messmethoden angepasst und ein breiter Borkonzentrationsbereich charakterisiert. Es wurden die frühen Phasen der Ausscheidungsbildung sowie Komplexbildung als auch das Wachstum der Sauerstoffausscheidungen untersucht. Mithilfe einer neuen Methodenkombination aus alkalischem Ätzen und FTIR-Spektroskopie konnten verschiedene Bor-Komplexe nachgewiesen werden. Die Erkenntnisse über deren Existenz sowie Kinetik wurden numerisch umgesetzt. Mittels Kleinwinkel-Neutronenstreuung wurden erstmals in den frühen Phasen der Sauerstoffausscheidung deren Form und Größe in Abhängigkeit der Borkonzentration bestimmt. Die physikalischen Prozesse, die zu einem beschleunigten als auch anomalen Ausscheidungsverhalten in Abhängigkeit der Borkonzentration führen, konnten teilweise aufgeklärt werden.
3

Organosilane Downstream Plasma On Ultra Low-k Dielectrics: Comparing Repair With Post Etch Treatment

Calvo, Jesús, Steinke, Philipp, Wislicenus, Marcus, Gerlich, Lukas, Seidel, Robert, Clauss, Ellen, Uhlig, Benjamin 22 July 2016 (has links) (PDF)
Plasma induced damage of ultra low-k (ULK) dielectrics is a common phenomenon in BEOL interconnects. The damage leads to an increase in k-value, which raises the RC delay, leading to increased power consumption and cross talk noise. Therefore, diverse repair and post etch treatments (PET) have been proposed to restore or reduce the ULK damage. However, current repair processes are usually based on non-plasma silylation, which suffers from limited chemistry diffusion into the ULK. Moreover, the conventional PET based on anisotropic plasma results in bottom vs. sidewall inhomogeneities of the structures (e.g. via and trench). To reduce these drawbacks, an organosilane downstream -plasma (DSP) was applied. This new application resulted in an increased resistance to ULK removal by fluorinated wet clean chemistries, preserving the ULK hydrophobicity, keeping its carbon content relatively high. The effective RC measured on 28 nm node patterned wafers treated with a DSP PET remains nevertheless comparable to the process of record (POR).
4

Verspannungsgetriebene Architekturen auf der Basis von Si-Nanomembranen

Cavallo, Francesca 23 March 2010 (has links) (PDF)
This thesis addresses the manufacturing of complex three-dimensional structures using planar nano-fabrication techniques and a stress-driven self-assembly process in group IV semiconductors. In the state of the art, the method called nanostructured origami, advocated here, has been used to achieve controlled fabrication of rolled-up, wrinkled and folded structures in different material systems. At the same time a new field of silicon technology based on transferable and engineered nanomembranes has developed with the realization of the fact that excellent properties of bulk Si are preserved in nm-thin layers released from the substrate surface. Furthermore, strained Si and SiGe membranes have received much attention as efficient templates to improve Si based device performance. This work focuses on finely tuning the inherent strain in Si-based membranes in order to reliably fold them into rolled-up and wrinkled structures. The topics include manufacturing, in depth characterization and potential applications of the fabricated objects. All samples investigated here have a multilayered structure comprising a sacrificial layer and an all semiconductor or hybrid functional layer. A selective underetching procedure is used to release the nanomembranes from their substrates. The strain profile in the growth direction of the functional layer is one of the key parameters to define the 3D objects forming during the release of the membranes from the substrate. Rolled-up tubes are achieved, for instance, by defining a bilayer strip in the region where bending is to take place. The upper layer of these areas is intentionally deposited with as much residual stress as possible. This intrinsic stress causes the defined slab to curl in a predictable fashion when released from the substrate by selective etching of the sacrificial film. Wrinkled structures are achieved by release of films with a uniform compressive strain from the substrate surface. Three different multilayer stacks are used here, i.e., Si:B/SiGe:B, SiGe and Si functional layers on a Si, SiO<sub>2</sub>, and Ge sacrificial layer, respectively. Major contributions of this thesis are the fabrication of integrated microtube resistors based on Si:B/SiGe:B tubes; the use of the Ge condensation technique to tailor the strain distribution in SiGe films on insulator; the manufacturing of fully scalable and CMOS compatible all-semiconductor and hybrid tubes ; the development of the REBOLA (RElease and BOndback of LAyers) technology for the fabrication of linear and circular networks formed by interconnected wrinkled structures; the experimental demonstration of light emission from Ge and Si nanoparticles integrated in a tube wall; the observation and investigation of the waveguiding effect along the axis of SiO<sub>x</sub>/Si tubes. For manufacturing of integrated microtube resistors, two-dimensional strained templates are created by MBE growth of Si:B/SiGe:B bilayers on an intrinsic Si sacrificial layer. Conventional patterning techniques are used to define a mesa for a rolled-up tube bridged between two electrodes on the strained film. The pattern is designed taking into account the anisotropic nature of Si etching by the used solution, and a preferential rolling of the film in the <010> direction of the Si crystal. After definition of the electrical contacts in the dedicated areas, rolled-up tubes bridged between two large terminal areas are fabricated by selective etching of the Si sacrificial layer. Linear I-V curves are recorded both for unreleased and rolled-up films, and an increase of the bilayer resistance after release from the substrate is observed. Scalability of the electrical resistance of tubes is achieved by tuning the rolled-up bilayer thickness and the tube diameter. SGOI substrates with various thicknesses and Ge composition profiles are fabricated by using the Ge condensation technique. For this purpose a SiGe layer with low Ge content is epitaxially grown on an ultra-thin SOI wafer and the obtained heterostructure undergoes dry thermal oxidation. Upon exposure to oxygen gas, Si in the SiGe layer is selectively oxidized, and the Ge piles up in the semiconductor layer at the receding SiO<sub>2</sub>/SiGe interface. The growing and the buried oxides act as barriers for the Ge out-diffusion, leading to the simultaneous thinning and Ge enrichment of the semiconductor film. Different Ge distribution profiles are created in the SiGe films by tuning the duration and/or the temperature of the oxidation process. An in-situ post-annealing step in nitrogen atmosphere is also used to tailor the composition profile in the film. Rolled-up microtubes and interconnected wrinkled structures are fabricated by releasing SiGe films graded and homogeneous in composition, respectively, by selective etching of the buried SiO<sub>2</sub> layer. Hybrid metal/semiconductor tubes are fabricated by using Si and SiGe films on insulator as templates. A patterned Cr film is thermally evaporated on the SOI and SGOI substrates and a starting edge for the rolling process is defined by photolithography and RIE (reactive ion etching). The inherent tensile strain in the Cr layer creates a strain gradient sufficient to drive the upward bending of the Cr/Si or Cr/SiGe bilayer once the film is released from the substrate. The third part of the thesis focuses on functionalization of rolled-up tubes as optical devices. SiO<sub>x</sub>/Si and SiGe tubes undergo high temperature annealing treatment to induce the formation of Si and Ge nanostructures in the tube wall. Intense photoluminescence in the visible spectrum range is acquired at room temperature from these structures. A detailed investigation of light emission and propagation in SiO<sub>x</sub>/Si tube is performed. Finally the rolled-up microtubes are shown to work as optical ring-resonators and waveguides. These results conclusively demonstrate the ability to pattern Si-based membranes with nanoscale features and controllably fold them into a predetermined 3D configuration by finely tuning the strain distribution in the membranes by well-estabilished deposition and growth processes i.e., molecular beam epitaxy, physical vapor deposition, and thermal oxidation. Future work may involve the use of selective epitaxy, local oxidation and strained metal or insulator film deposition to locally engineer the strain distribution on the same template. Selecting an appropriate geometry of starting etching windows allows in that case a batch production of different kinds of interconnected structures (tubes, coils and channel networks) by selective etching of a sacrificial buffer layer. This is a promising step to implement various functionalities, i.e, electron devices (SiGe/Si tubes as rolled-up resistors, or metal/semiconductor tubes as inductors), fluidic devices (interconnected wrinkled structures as nanofluidic channel networks), or optical devices (Si-based tubes with integrated emitters as ring-resonators or waveguides) on the same substrate and eventually on a transferable membrane. / Diese Arbeit beschäftigt sich mit der Herstellung von komplexen dreidimensionalen Strukturen unter der Verwendung planarer Nano-Fabrikationsmethoden und Verspannungsgetriebener Selbstordnungsprozesse. Die hier vorgestellte Methode, das sogenannte nanostrukturierte Origami, wird benutzt, um gezielt gerollte und gefaltete Strukturen verschiedener Materialklassen herzustellen. Gleichzeitig hat sich ein neues Feld der Siliziumtechnologie etabliert, welches darauf beruht, dass in ultradünnen, von der Substratoberfläche losgelösten Schichten die sehr guten Eigenschaften des Siliziumfestkörpers erhalten bleiben. Des Weiteren wurde Si und SiGe Membranen vermehrt Aufmerksamkeit als Ausgangsmaterial für Si-basierte Bauelemente zuteil. Diese Arbeit beschäftigt sich mit der Feineinstellung der Verspannung in Si-basierten Membranen zur reproduzierbaren Herstellung von aufgerollten und gefalteten Strukturen. Die Aufgabenstellung schließt die Fertigung, die weitgehende Charakterisierung und potentielle Verwendung der Strukturen ein. Alle in dieser Arbeit verwendeten Proben bestehen aus Multilagen, die sowohl eine Opferschicht als auch eine funktionelle Halbleiter- oder Hybridlage enthalten. Durch einen selektiven Prozess werden die Nanomembranen von ihrem Substrat abgelöst. Das Verspannungsprofil in Wachstumsrichtung der funktionellen Schicht ist einer der Schlüsselparameter, um die Art der 3D Objekte vorherzubestimmen, die sich während des Ablösens vom Substrat bilden. Die obere Lage wird dazu absichtlich mit einer maximalen Verspannung aufgebracht. Diese intrinsische Verspannung bewirkt, dass sich das zuvor festgelegte Gebiet in vorhersagbarer Weise aufrollt, wenn es durch selektives Ätzen vom Substrat abgelöst wird. Gefaltete Strukturen erhält man, wenn Lagen mit einer gleichmäßigen kompressiven Verspannung vom Substrat abgelöst werden. Drei verschiedene Multilagen werden in dieser Arbeit verwendet: Si:B/SiGe:B, SiGe und Si-basierte funktionale Schichten, die auf Si-, SiO<sub>2</sub>- oder Ge-Opferschichten aufgebracht werden. Die Schwerpunkte dieser Arbeit sind: die Herstellung von integrierten Mikroröhren- Transistoren auf der Basis von Si:B/SiGe:B-Röhren; die Ausnutzung von Ge-Kondensation um die Verspannung von SiGe auf Isolator-Substraten einzustellen; die Herstellung von skalierbaren und CMOS-kompatiblen Halbleiter- und Hybridröhren; die Entwicklung der REBOLA-Technik (RElease and BOnd-back of LAyers) zur Herstellung von linearen und kreisförmigen Netzwerken, die durch gefaltete und verbundene Strukturen gebildet werden; die experimentelle Demonstration der Emission von in den Tubewänden integrierten Si und Ge Nanopartikeln; sowie die Beobachtung und Untersuchung von Wellenleitung entlang der Achse von SiO<sub>x</sub>/Si Röhren. Für den Bau von integrierten Mikroröhren-Widerständen werden verspannte zweidimensionale Vorlagen mittels MBE-Wachstum aus Si:B/SiGe:B-Doppelschichten auf intrinsischen Si-Opferschichten verwendet. Klassische Strukturierungsmethoden werden verwendet, um Stege zu definieren, die zwei Elektroden mittels einer aufgerollten Mikroröhre verbinden. Die Strukturierungsmasken werden entsprechend ausgelegt, um sowohl das anisotrope selektive Ätzverhalten der verwendeten Ätzflüssigkeit, als auch die bevorzugte Rollrichtung der Doppelschicht in die <010>-Richtung des Si-Kristalls zu berücksichtigen. Nach der Abscheidung der beiden Elektroden werden deren Anschlussgegenden durch eine Röhre miteinander verbunden, die beim selektiven entfernen der Opferschicht entsteht. Lineare I-V Kennlinien werden sowohl für den flachen, als auch den aufgerollten Film gemessen, wobei ein erhöhter Widerstand für die aufgerollte Doppelschicht beobachtet wird. Eine Skalierbarkeit des Widerstandes der Röhren wurde durch Einstellen der Wandstärke und des Röhrendurchmessers erreicht. SGOI-Substrate verschiedener Dicken und Ge-Konzentrationsprofilen werden mittels der Ge-Kondensationsmethode hergestellt. Für diesen Zweck werden dünne SiGe-Schichten mit geringer Ge-Konzentration epitaktisch auf ultra-dünnen SOI-Wafer eptiaktisch aufgewachsen und anschließend einer trockenen, thermischen Oxidation unterworfen. Wenn diese Schicht dem Sauerstoff ausgesetzt wird, oxidiert Silizium an der Oberfläche und Ge sammelt sich in der Halbleiterschicht unter der SiO<sub>x</sub>/SiGe Grenzfläche an. Sowohl das aufwachsende als auch das vergrabene SiO<sub>2</sub> wirken als Diffusionsbarrieren für das Ge, was zu einem simultanen Ansteigen der Ge-Konzentration und dem Abdünnen der verbleibenden Halbleiterschicht führt. Verschiedene Ge-Verteilungsprofile wurden durch gezielte Variation der Dauer und/oder der Temperatur während des Oxidationsprozesses hergestellt. Ein in-situ Nachtempern in einer Stickstoffatmosphäre wird ebenfalls benutzt, um das Verteilungsprofil im Film anzupassen. Sowohl aufgerollte Mikroröhren als auch verbundene gefaltete Netzwerkstrukturen werden durch gezieltes Ablösen von gradierten oder homogenen SiGe Schichten mittels selektiven Ätzens des SiO<sub>2</sub> hergestellt. Hybride Metall/Halbleitende Röhren wurden fabriziert, wobei Si- und SiGe-Schichten auf Isolator als Template dienten. Dafür wurde eine strukturierte Cr-Schicht thermisch auf ein SOI- oder SGOI-Substrat aufgedampft und Startkanten für den Aufrollprozess mittels Fotolithographie und RIE-Ätzen definiert. Die inhärent dehnungsverspannten Cr-Schichten erzeugen einen Verspannungsgradienten, der beim Ablösen der Cr/Si- oder Cr/SiGe-Doppelschichten ein Aufwärtsrollen sicherstellt. Der dritte Teil der Arbeit fokussiert sich auf die Funktionalisierung von aufgerollten Röhren als optische Bauelemente. SiO<sub>x</sub>/Si-Röhren werden hohen Temperaturen ausgesetzt, um Si- und Ge-Nanostrukturen in der Röhrenwand zu bilden. Bei Raumtemperatur wird eine intensive Fotolumineszenz der Strukturen beobachtet. Eine detaillierte Untersuchung der Lichtemission und der Lichtausbreitung in den SiO<sub>x</sub> /Si-Röhren wurde durchgeführt. Dabei wird nachgewiesen, dass aufgerollte Mikroröhren als optische Ringresonatoren und Wellenleiter genutzt werden können. Die Ergebnisse zeigen klar, dass es unter der Benutzung von wohl etablierten Abscheidungsmethoden wie Molekularstrahlepitaxie, physikalischer Gasphasenabscheidung oder thermischer Oxidation möglich ist, Si-basierte Membranen mit nanometergroßen Strukturen herzustellen und in vorherbestimmte 3D-Konfigurationen zu überführen. Um die Verspannung auf dem benutzten Film-Template lokal einzustellen, könnten zukünftige Arbeiten von selektiver Epitaxie, lokaler Oxidation, sowie von verspannten Metallen, als auch von Isolatorschichten Gebrauch machen. Durch Auswahl einer entsprechenden Geometrie der Startfenster würde in diesem Fall die Herstellung verschiedener miteinander verbundener Strukturen (Röhren, Spulen und Kannalnetzwerken) möglich werden. Dies stellt einen vielversprechenden Ansatz dar, verschiedene funktionelle elektrische Bauelemente (SiGe/Si-Röhren als Widerstände oder Metall/Halbleiterspulen), Flüssigkeitsbauelemente (verbundene, gefaltete Netzwerkstrukturen als Nanokanäle) oder optische Bauelemente (Si-basierte Röhren mit integrierten Emittern als Ringresonatoren oder Wellenleiter) auf dem gleichen Substrat oder eventuell auf einer transferierbaren Membran unterzubringen.
5

Charakterisierung von Ätzgruben auf CaF2 (111) mittels Rasterkraftmikroskopie

Motzer, Christian 08 October 2008 (has links)
Diese Arbeit beschäftigt sich mit der Untersuchung von geätzten (111) Calciumdifluoridspaltflächen mittels hochauflösender Rasterkraftmikroskopie (SFM). Die Ätzfiguren werden mit verschiedenen Säuren wie Salzsäure, Schwefelsäure, Phosphorsäure und Salpetersäure erzeugt, die typischerweise zur Versetzungsdefektanalyse eingesetzt werden. Die qualitativen Veränderungen auf der Oberfläche werden charakterisiert. Anschließend erfolgt eine quantitative Auswertung der Ätzgruben in Bezug auf ihre geometrische Erscheinung. Für alle Säuren können neben trigonalen Ätzgruben mit spitzen Böden auch Ätzgruben mit flachen Böden beobachtet werden. Aufbau und Wechselwirkungen der Versetzungen zueinander verursachen bestimmte relative Anordnungen der Ätzgruben wie z.B. Aneinanderreihungen von Ätzgruben bzw. Ätzgräben.. Beim qualitativen Vergleich der Ätzfiguren zeigen sich für die jeweiligen Säuren spezielle Merkmale. Das SFM erlaubt die direkte Auswertung der Größen der untersuchten Ätzgruben. Dadurch lassen sich zwei unterschiedliche Klassen von Ätzgruben unterscheiden. Die eine Klasse entsteht durch an der Oberfläche endende Versetzungsdefekte und ist charakterisiert durch exzentrische tiefe Ätzgruben. Die andere Klasse entsteht durch lokale Defekte unter der Oberfläche, die zentrische Ätzgruben geringerer Tiefe verursachen. Ätzgruben mit flachen Böden konnten ebenfalls in diese Klassen eingeteilt werden.
6

Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates

Shkurmanov, Alexander, Sturm, Chris, Lenzner, Jörg, Feuillet, Guy, Tendille, Florian, De Mierry, Philippe, Grundmann, Marius 22 September 2016 (has links) (PDF)
We report the possibility to control the tilting of nanoneedles and nanowires by using structured sapphire substrates. The advantage of the reported strategy is to obtain well oriented growth along a single direction tilted with respect to the surface normal, whereas the growth in other directions is suppressed. In our particular case, the nanostructures are tilted with respect to the surface normal by an angle of 58°. Moreover, we demonstrate that variation of the nanostructures shape from nanoneedles to cylindrical nanowires by using SiO2 layer is observed.
7

Nanoscale Imaging of Mechanical Properties of Polymeric Materials Using Nanotomography and Scanning Force Microscopy Based Methods

Dietz, Christian 24 November 2008 (has links) (PDF)
Ziel dieser Arbeit war es, neue Methoden in der Rasterkraftmikroskopie (SFM) zu entwickeln und an polymeren Materialien zu demonstrieren. Die Nanotomographie ist eine moderne dreidimensionale Volumenabbildungsmethode auf der Nanometerskala basierend auf der Rasterkraftmikroskopie. In dieser Arbeit wird ein Ansatz zur voll automatisierten Nanotomographie mit einer Auflösung von ~ 10 nm am Beispiel des menschlichen Knochens demonstriert. Die nasschemische Abtragung der Probe und das Entfernen der Ätzrückstände erfolgt dabei automatisch und in situ in einer Flüssigkeitszelle des Rasterkraftmikroskops. Lineare Verschiebungen der aufgenommenen Schichten werden mit Hilfe eines implementierten Kreuzkorrelations-Algorithmus korrigiert. Darüber hinaus wird durch Kombination der Nanotomographie mit dem bimodalen Messprinzip die laterale Auflösung dieser Methode am Beispiel von elastomerem Polypropylen deutlich gesteigert. Die mechanischen Oberflächeneigenschaften dieses Polymers wurden mit dynamischen Indentationsexperimenten mit dem Rasterkraftmikroskop bestimmt. Die Auftragung der dissipierten Energie zwischen Spitze und Oberfläche als Funktion der Schwingungsamplitude der Spitze ergibt für die amorphen und kristallinen Bereiche charakteristische Dissipationskurven. Diese lassen Rückschlüsse auf den Dissipationsmechanismus zwischen Messspitze und Oberfläche zu. Damit können zusätzliche Informationen über die mechanische Eigenschaften der Oberfläche des Polymers gewonnen werden. Darüber hinaus werden Erkenntnisse über die lateralen mechanischen Oberflächeneigenschaften von Polymeren durch den Einsatz des frequenzmodulierten Torsionsmodus der Rasterkraftmikroskopie erlangt.
8

Verspannungsgetriebene Architekturen auf der Basis von Si-Nanomembranen

Cavallo, Francesca 07 July 2009 (has links)
This thesis addresses the manufacturing of complex three-dimensional structures using planar nano-fabrication techniques and a stress-driven self-assembly process in group IV semiconductors. In the state of the art, the method called nanostructured origami, advocated here, has been used to achieve controlled fabrication of rolled-up, wrinkled and folded structures in different material systems. At the same time a new field of silicon technology based on transferable and engineered nanomembranes has developed with the realization of the fact that excellent properties of bulk Si are preserved in nm-thin layers released from the substrate surface. Furthermore, strained Si and SiGe membranes have received much attention as efficient templates to improve Si based device performance. This work focuses on finely tuning the inherent strain in Si-based membranes in order to reliably fold them into rolled-up and wrinkled structures. The topics include manufacturing, in depth characterization and potential applications of the fabricated objects. All samples investigated here have a multilayered structure comprising a sacrificial layer and an all semiconductor or hybrid functional layer. A selective underetching procedure is used to release the nanomembranes from their substrates. The strain profile in the growth direction of the functional layer is one of the key parameters to define the 3D objects forming during the release of the membranes from the substrate. Rolled-up tubes are achieved, for instance, by defining a bilayer strip in the region where bending is to take place. The upper layer of these areas is intentionally deposited with as much residual stress as possible. This intrinsic stress causes the defined slab to curl in a predictable fashion when released from the substrate by selective etching of the sacrificial film. Wrinkled structures are achieved by release of films with a uniform compressive strain from the substrate surface. Three different multilayer stacks are used here, i.e., Si:B/SiGe:B, SiGe and Si functional layers on a Si, SiO<sub>2</sub>, and Ge sacrificial layer, respectively. Major contributions of this thesis are the fabrication of integrated microtube resistors based on Si:B/SiGe:B tubes; the use of the Ge condensation technique to tailor the strain distribution in SiGe films on insulator; the manufacturing of fully scalable and CMOS compatible all-semiconductor and hybrid tubes ; the development of the REBOLA (RElease and BOndback of LAyers) technology for the fabrication of linear and circular networks formed by interconnected wrinkled structures; the experimental demonstration of light emission from Ge and Si nanoparticles integrated in a tube wall; the observation and investigation of the waveguiding effect along the axis of SiO<sub>x</sub>/Si tubes. For manufacturing of integrated microtube resistors, two-dimensional strained templates are created by MBE growth of Si:B/SiGe:B bilayers on an intrinsic Si sacrificial layer. Conventional patterning techniques are used to define a mesa for a rolled-up tube bridged between two electrodes on the strained film. The pattern is designed taking into account the anisotropic nature of Si etching by the used solution, and a preferential rolling of the film in the <010> direction of the Si crystal. After definition of the electrical contacts in the dedicated areas, rolled-up tubes bridged between two large terminal areas are fabricated by selective etching of the Si sacrificial layer. Linear I-V curves are recorded both for unreleased and rolled-up films, and an increase of the bilayer resistance after release from the substrate is observed. Scalability of the electrical resistance of tubes is achieved by tuning the rolled-up bilayer thickness and the tube diameter. SGOI substrates with various thicknesses and Ge composition profiles are fabricated by using the Ge condensation technique. For this purpose a SiGe layer with low Ge content is epitaxially grown on an ultra-thin SOI wafer and the obtained heterostructure undergoes dry thermal oxidation. Upon exposure to oxygen gas, Si in the SiGe layer is selectively oxidized, and the Ge piles up in the semiconductor layer at the receding SiO<sub>2</sub>/SiGe interface. The growing and the buried oxides act as barriers for the Ge out-diffusion, leading to the simultaneous thinning and Ge enrichment of the semiconductor film. Different Ge distribution profiles are created in the SiGe films by tuning the duration and/or the temperature of the oxidation process. An in-situ post-annealing step in nitrogen atmosphere is also used to tailor the composition profile in the film. Rolled-up microtubes and interconnected wrinkled structures are fabricated by releasing SiGe films graded and homogeneous in composition, respectively, by selective etching of the buried SiO<sub>2</sub> layer. Hybrid metal/semiconductor tubes are fabricated by using Si and SiGe films on insulator as templates. A patterned Cr film is thermally evaporated on the SOI and SGOI substrates and a starting edge for the rolling process is defined by photolithography and RIE (reactive ion etching). The inherent tensile strain in the Cr layer creates a strain gradient sufficient to drive the upward bending of the Cr/Si or Cr/SiGe bilayer once the film is released from the substrate. The third part of the thesis focuses on functionalization of rolled-up tubes as optical devices. SiO<sub>x</sub>/Si and SiGe tubes undergo high temperature annealing treatment to induce the formation of Si and Ge nanostructures in the tube wall. Intense photoluminescence in the visible spectrum range is acquired at room temperature from these structures. A detailed investigation of light emission and propagation in SiO<sub>x</sub>/Si tube is performed. Finally the rolled-up microtubes are shown to work as optical ring-resonators and waveguides. These results conclusively demonstrate the ability to pattern Si-based membranes with nanoscale features and controllably fold them into a predetermined 3D configuration by finely tuning the strain distribution in the membranes by well-estabilished deposition and growth processes i.e., molecular beam epitaxy, physical vapor deposition, and thermal oxidation. Future work may involve the use of selective epitaxy, local oxidation and strained metal or insulator film deposition to locally engineer the strain distribution on the same template. Selecting an appropriate geometry of starting etching windows allows in that case a batch production of different kinds of interconnected structures (tubes, coils and channel networks) by selective etching of a sacrificial buffer layer. This is a promising step to implement various functionalities, i.e, electron devices (SiGe/Si tubes as rolled-up resistors, or metal/semiconductor tubes as inductors), fluidic devices (interconnected wrinkled structures as nanofluidic channel networks), or optical devices (Si-based tubes with integrated emitters as ring-resonators or waveguides) on the same substrate and eventually on a transferable membrane. / Diese Arbeit beschäftigt sich mit der Herstellung von komplexen dreidimensionalen Strukturen unter der Verwendung planarer Nano-Fabrikationsmethoden und Verspannungsgetriebener Selbstordnungsprozesse. Die hier vorgestellte Methode, das sogenannte nanostrukturierte Origami, wird benutzt, um gezielt gerollte und gefaltete Strukturen verschiedener Materialklassen herzustellen. Gleichzeitig hat sich ein neues Feld der Siliziumtechnologie etabliert, welches darauf beruht, dass in ultradünnen, von der Substratoberfläche losgelösten Schichten die sehr guten Eigenschaften des Siliziumfestkörpers erhalten bleiben. Des Weiteren wurde Si und SiGe Membranen vermehrt Aufmerksamkeit als Ausgangsmaterial für Si-basierte Bauelemente zuteil. Diese Arbeit beschäftigt sich mit der Feineinstellung der Verspannung in Si-basierten Membranen zur reproduzierbaren Herstellung von aufgerollten und gefalteten Strukturen. Die Aufgabenstellung schließt die Fertigung, die weitgehende Charakterisierung und potentielle Verwendung der Strukturen ein. Alle in dieser Arbeit verwendeten Proben bestehen aus Multilagen, die sowohl eine Opferschicht als auch eine funktionelle Halbleiter- oder Hybridlage enthalten. Durch einen selektiven Prozess werden die Nanomembranen von ihrem Substrat abgelöst. Das Verspannungsprofil in Wachstumsrichtung der funktionellen Schicht ist einer der Schlüsselparameter, um die Art der 3D Objekte vorherzubestimmen, die sich während des Ablösens vom Substrat bilden. Die obere Lage wird dazu absichtlich mit einer maximalen Verspannung aufgebracht. Diese intrinsische Verspannung bewirkt, dass sich das zuvor festgelegte Gebiet in vorhersagbarer Weise aufrollt, wenn es durch selektives Ätzen vom Substrat abgelöst wird. Gefaltete Strukturen erhält man, wenn Lagen mit einer gleichmäßigen kompressiven Verspannung vom Substrat abgelöst werden. Drei verschiedene Multilagen werden in dieser Arbeit verwendet: Si:B/SiGe:B, SiGe und Si-basierte funktionale Schichten, die auf Si-, SiO<sub>2</sub>- oder Ge-Opferschichten aufgebracht werden. Die Schwerpunkte dieser Arbeit sind: die Herstellung von integrierten Mikroröhren- Transistoren auf der Basis von Si:B/SiGe:B-Röhren; die Ausnutzung von Ge-Kondensation um die Verspannung von SiGe auf Isolator-Substraten einzustellen; die Herstellung von skalierbaren und CMOS-kompatiblen Halbleiter- und Hybridröhren; die Entwicklung der REBOLA-Technik (RElease and BOnd-back of LAyers) zur Herstellung von linearen und kreisförmigen Netzwerken, die durch gefaltete und verbundene Strukturen gebildet werden; die experimentelle Demonstration der Emission von in den Tubewänden integrierten Si und Ge Nanopartikeln; sowie die Beobachtung und Untersuchung von Wellenleitung entlang der Achse von SiO<sub>x</sub>/Si Röhren. Für den Bau von integrierten Mikroröhren-Widerständen werden verspannte zweidimensionale Vorlagen mittels MBE-Wachstum aus Si:B/SiGe:B-Doppelschichten auf intrinsischen Si-Opferschichten verwendet. Klassische Strukturierungsmethoden werden verwendet, um Stege zu definieren, die zwei Elektroden mittels einer aufgerollten Mikroröhre verbinden. Die Strukturierungsmasken werden entsprechend ausgelegt, um sowohl das anisotrope selektive Ätzverhalten der verwendeten Ätzflüssigkeit, als auch die bevorzugte Rollrichtung der Doppelschicht in die <010>-Richtung des Si-Kristalls zu berücksichtigen. Nach der Abscheidung der beiden Elektroden werden deren Anschlussgegenden durch eine Röhre miteinander verbunden, die beim selektiven entfernen der Opferschicht entsteht. Lineare I-V Kennlinien werden sowohl für den flachen, als auch den aufgerollten Film gemessen, wobei ein erhöhter Widerstand für die aufgerollte Doppelschicht beobachtet wird. Eine Skalierbarkeit des Widerstandes der Röhren wurde durch Einstellen der Wandstärke und des Röhrendurchmessers erreicht. SGOI-Substrate verschiedener Dicken und Ge-Konzentrationsprofilen werden mittels der Ge-Kondensationsmethode hergestellt. Für diesen Zweck werden dünne SiGe-Schichten mit geringer Ge-Konzentration epitaktisch auf ultra-dünnen SOI-Wafer eptiaktisch aufgewachsen und anschließend einer trockenen, thermischen Oxidation unterworfen. Wenn diese Schicht dem Sauerstoff ausgesetzt wird, oxidiert Silizium an der Oberfläche und Ge sammelt sich in der Halbleiterschicht unter der SiO<sub>x</sub>/SiGe Grenzfläche an. Sowohl das aufwachsende als auch das vergrabene SiO<sub>2</sub> wirken als Diffusionsbarrieren für das Ge, was zu einem simultanen Ansteigen der Ge-Konzentration und dem Abdünnen der verbleibenden Halbleiterschicht führt. Verschiedene Ge-Verteilungsprofile wurden durch gezielte Variation der Dauer und/oder der Temperatur während des Oxidationsprozesses hergestellt. Ein in-situ Nachtempern in einer Stickstoffatmosphäre wird ebenfalls benutzt, um das Verteilungsprofil im Film anzupassen. Sowohl aufgerollte Mikroröhren als auch verbundene gefaltete Netzwerkstrukturen werden durch gezieltes Ablösen von gradierten oder homogenen SiGe Schichten mittels selektiven Ätzens des SiO<sub>2</sub> hergestellt. Hybride Metall/Halbleitende Röhren wurden fabriziert, wobei Si- und SiGe-Schichten auf Isolator als Template dienten. Dafür wurde eine strukturierte Cr-Schicht thermisch auf ein SOI- oder SGOI-Substrat aufgedampft und Startkanten für den Aufrollprozess mittels Fotolithographie und RIE-Ätzen definiert. Die inhärent dehnungsverspannten Cr-Schichten erzeugen einen Verspannungsgradienten, der beim Ablösen der Cr/Si- oder Cr/SiGe-Doppelschichten ein Aufwärtsrollen sicherstellt. Der dritte Teil der Arbeit fokussiert sich auf die Funktionalisierung von aufgerollten Röhren als optische Bauelemente. SiO<sub>x</sub>/Si-Röhren werden hohen Temperaturen ausgesetzt, um Si- und Ge-Nanostrukturen in der Röhrenwand zu bilden. Bei Raumtemperatur wird eine intensive Fotolumineszenz der Strukturen beobachtet. Eine detaillierte Untersuchung der Lichtemission und der Lichtausbreitung in den SiO<sub>x</sub> /Si-Röhren wurde durchgeführt. Dabei wird nachgewiesen, dass aufgerollte Mikroröhren als optische Ringresonatoren und Wellenleiter genutzt werden können. Die Ergebnisse zeigen klar, dass es unter der Benutzung von wohl etablierten Abscheidungsmethoden wie Molekularstrahlepitaxie, physikalischer Gasphasenabscheidung oder thermischer Oxidation möglich ist, Si-basierte Membranen mit nanometergroßen Strukturen herzustellen und in vorherbestimmte 3D-Konfigurationen zu überführen. Um die Verspannung auf dem benutzten Film-Template lokal einzustellen, könnten zukünftige Arbeiten von selektiver Epitaxie, lokaler Oxidation, sowie von verspannten Metallen, als auch von Isolatorschichten Gebrauch machen. Durch Auswahl einer entsprechenden Geometrie der Startfenster würde in diesem Fall die Herstellung verschiedener miteinander verbundener Strukturen (Röhren, Spulen und Kannalnetzwerken) möglich werden. Dies stellt einen vielversprechenden Ansatz dar, verschiedene funktionelle elektrische Bauelemente (SiGe/Si-Röhren als Widerstände oder Metall/Halbleiterspulen), Flüssigkeitsbauelemente (verbundene, gefaltete Netzwerkstrukturen als Nanokanäle) oder optische Bauelemente (Si-basierte Röhren mit integrierten Emittern als Ringresonatoren oder Wellenleiter) auf dem gleichen Substrat oder eventuell auf einer transferierbaren Membran unterzubringen.
9

A Novel Method for the Bottom-Up Microstructuring of Silicon and Patterning of Polymers

Schutzeichel, Christopher 28 June 2021 (has links)
The aim of this work was the development of a method for the generation of surface features on n-type silicon samples with deeply buried p-implants, in the form of heterogeneities aligned directly above the buried implants. This task was motivated by the realisation of a simpler process for the formation of superjunction transistors, which currently require the repeated creation of the same implantation structure over multiple steps of photolithography These lithography steps can be potentially replaced, if a suitable process for the self-alignment in accordance to the buried implants can be found. The work on this goal was separated into three parts: the analysis of samples for suitable surface properties, the generation of surface heterogeneities using such a property and the analysis of the mechanism for the used process of contrast generation. Within this doctoral thesis, a before unseen method of selective etching on silicon was discovered and investigated. Hence, the overall aim of this work was successfully achieved. • Samples containing buried p-implants inside a n-type silicon substrate were characterised with regard to various properties. Of these, the through-sample resistance showed a significant variation in accordance to the buried implants also through a homogeneous epitaxial layer. • Various methods aimed at the usage of the resistance variation in order to generate a surface heterogeneity through electrodeposition failed to enable a suitable process. Instead, another method was found, which enables the replication of the implant structure via selective etching. This novel process enables the lithography free patterning of the substrates through a simple alkaline etch process performed under illumination. This results in a surface heterogeneity as an alteration of the sample topography combined with a material contrast due to the formation of an in-situ SiO2 etch mask. This material variation can also be used for the selective deposition of polymers, enabling further processing of the etched samples. • For this new method, named Light Induced Selective Etching (LISE), a mechanism underlying the selectivity was proposed and through a number of experiments. In essence, the illumination during the etching process produces a flux of photogenerated electrons directed from the buried implants toward the surface, which increase the negative surface charge in the areas above these implants. The locally increased surface charge causes a local protection of the native silicon oxide layer against the alkaline etching, leading to the structuring of the substrate. In essence, this novel method allows for the previously unreported self-adjusted structuring of silicon based on deeply buried implant structures. In general, even the characterisation of such implant structures is difficult, whereas this method allows for structuring with regard to such buried structures with a very simple setup of only an etchant solution and a suitable light source. With regard to the introduction and motivation of this thesis, this process can possibly be applied for the intended purpose of creating a self-aligned resist in order to replace repeating lithography steps. This is the case in particular in combination with polymer deposition, as shown in the last part of the results. Certain limitations, such as the resolution limit and dimensional size increase exist, but can be circumvented by appropriate device design and further optimisation of the process parameters. Furthermore, the LISE process appears applicable for the manufacturing of MEMS and MOEMS devices, as the typical feature sizes in these cases fit well to the achieved resolution of the LISE process. For devices needing a certain implant structure in combination with a corresponding topography, the new method allows for the elimination of at least one lithography step, including the necessary substeps such as alignment and measurement. Accordingly, LISE has the potential of simplifying the manufacturing process, enabling better and cheaper devices.
10

Organosilane Downstream Plasma On Ultra Low-k Dielectrics: Comparing Repair With Post Etch Treatment: Organosilane Downstream Plasma On Ultra Low-k Dielectrics:Comparing Repair With Post Etch Treatment

Calvo, Jesús, Steinke, Philipp, Wislicenus, Marcus, Gerlich, Lukas, Seidel, Robert, Clauss, Ellen, Uhlig, Benjamin 22 July 2016 (has links)
Plasma induced damage of ultra low-k (ULK) dielectrics is a common phenomenon in BEOL interconnects. The damage leads to an increase in k-value, which raises the RC delay, leading to increased power consumption and cross talk noise. Therefore, diverse repair and post etch treatments (PET) have been proposed to restore or reduce the ULK damage. However, current repair processes are usually based on non-plasma silylation, which suffers from limited chemistry diffusion into the ULK. Moreover, the conventional PET based on anisotropic plasma results in bottom vs. sidewall inhomogeneities of the structures (e.g. via and trench). To reduce these drawbacks, an organosilane downstream -plasma (DSP) was applied. This new application resulted in an increased resistance to ULK removal by fluorinated wet clean chemistries, preserving the ULK hydrophobicity, keeping its carbon content relatively high. The effective RC measured on 28 nm node patterned wafers treated with a DSP PET remains nevertheless comparable to the process of record (POR).

Page generated in 0.4126 seconds