• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering Sensitivity: An Optical Optimization of Ring Resonator Arrays for Label-Free Whole Bacterial Sensing

Justin C. Wirth (5930402) 17 October 2019 (has links)
<p><a>The quick, reliable, and sensitive detection of bacterial contamination is desired in areas such as counter bioterrorism, medicine, and food/water safety as pathogens such as<i> E. coli</i> can cause harmful effects with the presence of just a few cells. However, standard high sensitivity techniques require laboratories and trained technicians, requiring significant time and expense. More desirable would be a sensitive point-of-care device that could detect an array of pathogens without sample pre-treatment, or a continuous monitoring device operating without the need for frequent operator intervention.<br> <br> Optical microring resonators in silicon photonic platforms are particularly promising as scalable, multiplexed refractive index sensors for an integrated biosensing array. However, no systematic effort has been made to optimize the sensitivity of microrings for the detection of relatively large discrete analytes such as bacteria, which differs from the commonly considered cases of fluid or molecular sensitivity. This work demonstrates the feasibility of using high finesse microrings to detect whole bacterial cells with single cell resolution over a full range of potential analyte-to-sensor binding scenarios. Sensitivity parameters describing the case of discrete analyte detection are derived and used to guide computational optimization of microrings and their constituent waveguides, after considering a range of parameters such as waveguide dimension, material, modal polarization, and ring radius. The sensitivity of the optimized 2.5 µm radius silicon TM O-band ring is experimentally demonstrated with photoresist cellular simulants. A multiplexed optimized ring array is then shown to detect <i>E. Coli</i> cells in an experimental proof of concept.</a></p>

Page generated in 0.118 seconds