• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupled self-assembly and flow alignment of silver nanorods

Murali, Shanthi, Davis, Virginia A., January 2008 (has links) (PDF)
Thesis (M.S.)--Auburn University, 2008. / Abstract. Vita. Includes bibliographical references (p. 86-99).
2

Truly Non Invasive Glucose Optical Sensor Based On Metal Nanoparticles Generation

Garcia, Marisol 01 January 2006 (has links)
Diabetes is a disease that causes many complications in human normal function. This disease represents the sixth-leading cause of death in USA. Prevention of diabetes-related complications can be accomplished through tight control of glucose levels in blood. In the last decades many different glucose sensors have been developed, however, none of them are really non invasive. Herein, we present the study of the application of gold and silver nanoparticles with different shapes and aspect ratios to detect glucose traces in human fluids such as tears and sweat. This is to our knowledge the first truly non invasive glucose optical sensor, with extraordinary limit of detection and selectivity. The best proven nanoparticles for this application were gold nanospheres. Gold nanospheres were synthesized using chloroauric acid tri-hydrated (HAuCl4.3H2O) in solution, in the presence of glucose and ammonia hydroxide. The higher the glucose concentration, the higher the number of nanoparticles generated, thus the higher the extinction efficiency of the solution. The linear dependence of the extinction efficiency of the gold nanoparticles solution with glucose concentration makes of this new sensor suitable for direct applications in biomedical sensing. Our approach is based on the well known Tollens test.
3

Application of rigorous coupled-wave analysis for studying radiative properties of micro/nanostructures and silver nanorods on gratings

Haider, Ahmad 08 July 2011 (has links)
Tailoring the radiative properties of periodic micro/nanostructures can be used as an efficient way to create devices which have applications in energy harvesting, bioengineering and optical sensing. These structures are analyzed by a rigorous solution of the electromagnetic wave phenomena at the interfaces. The thesis explores the application of rigorous coupled-wave analysis (RCWA) method to study the optical responses of microstructure arrays. First section of the thesis elucidates the various mechanisms which are responsible for causing enhanced light absorption in inclined parallel plate grating arrays. Illustrative evidences of surface plasmon and magnetic resonances are provided by one and two-dimensional plots prepared by RCWA. Analytical agreement with visual data is obtained through use of LC circuit models. Finally, the effects of different geometric parameters on the resonance conditions are investigated. The second part of the thesis deals with application of RCWA to study the effect of light scattering on inclined silver nanorod (AgNR) arrays grown on compact disc (CD) gratings. Depending on the manner in which AgNRs are oriented with respect to CD gratings, they exhibit different optical behavior to incoming light. Effects of both incident light polarization and AgNR orientation with respect to the grating have been studied through the use of RCWA and effective medium theory. Calculated results are compared with experimental values and good agreements are observed for total reflection as well as trends of individual diffraction orders.
4

Synthesis Of Colloidal Silver Particles With Different Sizes By Seeding Approach For Surface Enhanced Raman Scattering (sers) Studies

Sanci, Rukiye 01 October 2009 (has links) (PDF)
In this study, silver nanorods and nanospheroids were prepared both in aqueous solution and on the surface of glass slides through seed-mediated growth approach at room temperature and used as a surface enhanced Raman scattering (SERS) substrate. The synthesis of metallic nanorods was started with the production of silver nanospheres as seed utilizing sodium borohydride and trisodium citrate as reducing and capping agents, respectively. These seeds were then added to a growth solution containing additional silver salt, ascorbic acid and cetyltrimethylammonium bromide (CTAB.) Nanorod preparation conditions were first optimized in solution phase. The plasmon absorption of the formed nanocrystals was monitored by UV-Visible spectrometry. The largest red shift in the longitudinal plasmon resonance absorption of silver nanostructures was tried to be achieved in order to realize the highest electromagnetic enhancement in Raman measurements. The images of the formed nanorods were recorded using field emission scanning electron microscopy (FE-SEM). The optimized colloidal growth conditions were adopted for the growth of nanorods on the surface of the glass substrate. Sol-gel coated glass slides were used in order to increase the porosity on the surface for an effective seeding process. We reported the development of a novel SERS substrate prepared by growing silver nanorods directly on the surface of glass surface without using any linker molecule. The SERS performances of the nanorod growth surfaces were evaluated with crystal violet (CV), brilliant cresyl blue (BCB) and benzoic acid (BA). Some modifications such as the increase in the AgNO3 concentration in the growth solution and the addition of hydrocarbons to the growth solution were investigated for the enhancement of the SERS signal. The intense spectra obtained for the model compounds demonstrated the efficiency of the prepared substrate for the SERS enhancement and its potential as a SERS detection probe for chemical and biological analysis.

Page generated in 0.0738 seconds