• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bestimmung der Molekülstruktur von Dicyclopropylsilylamin, Allyl-trimethylsilyl-amin und Methyl-allyldimethylsilyl-amin mit der Methode der Elektronenbeugung in der Gasphase und quantenchemische Rechnungen

Müller, Sven. January 1900 (has links) (PDF)
Tübingen, Univ., Diss., 2002. / Computerdatei im Fernzugriff.
2

Bestimmung der Molekülstruktur von Dicyclopropylsilylamin, Allyl-trimethylsilyl-amin und Methyl-allyldimethylsilyl-amin mit der Methode der Elektronenbeugung in der Gasphase und quantenchemische Rechnungen

Müller, Sven. January 1900 (has links) (PDF)
Tübingen, Univ., Diss., 2002. / Computerdatei im Fernzugriff.
3

Bestimmung der Molekülstruktur von Dicyclopropylsilylamin, Allyl-trimethylsilyl-amin und Methyl-allyldimethylsilyl-amin mit der Methode der Elektronenbeugung in der Gasphase und quantenchemische Rechnungen

Müller, Sven. January 1900 (has links) (PDF)
Tübingen, Universiẗat, Diss., 2002.
4

Eisenfragment-substituierte Silanole, Silylamine und Heterosiloxane von Aluminium, Gallium und Indium / Iron fragment-substituted Silanols, Silylamines and Heterosiloxanes of Aluminium, Gallium and Indium

Schumacher, Dirk January 2002 (has links) (PDF)
A. Eisenfragment-substituierte Heterosiloxane von Aluminium, Gallium und Indium Die Umsetzung der Ferrio-silanole 5a-c mit Trimethylaluminium, Triisobutylaluminium, Trimethylgallium bzw. Trimethylindium liefert unter Alkaneliminierung die Ferrio-siloxyalane, -gallane bzw. -indane 7a-d, 8a,b und 9a,b in Form von dimeren Aggregaten, welche im Fall von 7b,8b,9a sowie 9b auch röntgenstrukturanalytisch charakterisiert sind. Durch Reaktion der chiralen Ferrio-silanole Cp(OC)2Fe-Si(Me)(R)OH bzw. Cp(OC)(Ph3P)Fe-Si(Me)(R)OH mit AlMe3, GaMe3 bzw. InMe3 erhält man die diastereomeren Ferrio-siloxyalane, -gallane bzw. -indane 8c,9c,11a,b und 12a-c in Form von Dimeren, bei denen man die Aggregation auch NMR-spektroskopisch nachweisen kann. Die Reaktion der Ferrio-silandiole Cp(OC)2Fe-SiR(OH)2 (13a-c) mit einem bzw. zwei Äquivalenten Trimethylgallium (6c) bzw. Trimethylindium (6e) liefert unter Methaneliminierung die dimeren Eisen-substituierten Gallium- bzw. Indiumsiloxanole 14a-e in einem Diastereomerenverhältnis von 50 : 50. 14a-e, die über eine freie Silanolfunktion verfügen, zersetzen sich in Lösung infolge Übertragung des Wasserstoffs vom Sauerstoff auf das Eisenatom. Als Zersetzungsprodukte werden die Eisenhydrid-Verbindung Cp(OC)2Fe-H und Polyheterosiloxane des Typs [RSi(OEMe2)O]n erhalten. Bei der Umsetzung von Cp(OC)2Fe-Si(OH)3 (17) mit Trimethylgallium (6c) bzw. Trimethylindium (6e) erhält man unter Methanabspaltung das Eisen-substituierte Gallium- bzw. Indiumsiloxandiol (18a,b). Setzt man das Ferrio-silantriol 17 mit zwei Äquivalenten Trimethylgallium (6c) in siedendem n-Hexan in Anwesenheit von vier Äquivalenten Tetrahydrofuran um, so resultiert das auch röntgenstrukturanalytisch gesicherte Käfigheterosiloxan 19. Die Umsetzung des Ferriomethyl-silanols Cp(OC)2Fe-CH2-SiMe2OH (20) mit den Trialkylverbindungen der Gruppe 13 (6b-e) liefert unter Alkaneliminierung glatt die Ferriomethyl-substituierten Heterosiloxane 21a-d. Die Aggregation zu Dimeren ist für 21b-d sowohl durch Röntgenstrukturanalyse als auch durch Molgewichtsbestimmung gesichert. B. Phosphan-substituierte Ferrio-silanole und -silantriole: Synthese und Kondensation mit Dimethylchlorsilan Die zweifach Phosphan-substituierten Ferrio-silanole 4a,b können über die Hydrolyse der Ferrio-chlorsilane 2a,b in Anwesenheit von Al2O3 und Triethylamin dargestellt werden. Als alternativer Zugang findet sich der Co2(CO)8-katalysierte H/OH-Austausch an den Ferrio-silanen 3a,b in Gegenwart von Wasser. Der als Zwischenstufe postulierte, zweikernige Komplex Cp(Me3P)2Fe- Si(Me)(p-Tol)Co(CO)4 (5) kann durch Reaktion des Ferrio-silans 3b mit Co2(CO)8 erhalten werden. Das Triphenylphosphan-substituierte Ferrio-trichlorsilan Cp(OC)(Ph3P)Fe-SiCl3 (9) kann im Zweiphasensystem THF/H2O zum Phosphan-substituierten Ferrio-silantriol 10 hydrolysiert werden. Die entsprechende Hydrolyse des kinetisch deaktiverten Cp(Me3P)2Fe-SiCl3 (8b) muß durch Al2O3-Zusatz aktiviert werden. Die Umsetzung der Ferrio-silantriole 10, 11 mit drei Äquivalenten Dimethylchlorsilan und Triethylamin als Hilfsbase führt glatt zu den entsprechenden Ferrio-tetrasiloxanen 12a,b. C. Polychlorierte Metallo-siloxane: Synthese und Austausch- reaktionen mit Methanol und Wasser Die Synthese der polychlorierten Metallo-siloxane 3-5 gelingt durch Umsetzung der Metallate Na[Fe(CO)2Cp] (1a) bzw. Li[W(CO)2(PMe3)Cp] (1b) mit Hexachloro-disiloxan (2a) bzw. Octachlorotetrasiloxan (2b). Das Ferrio-disiloxan 3 kann durch Reaktion mit einem weiteren Äquivalent des Natriumferrats 1a in die Bis(ferrio)-Spezies 6 überführt werden. Die NEt3-assistierte Methanolyse des Ferrio-disiloxans 3 mit drei Äquivalenten MeOH führt unter regiospezifischem Cl/OMe-Austausch am g-Si-Atom zum Trimethoxy-substituierten Ferrio-disiloxan 7, das durch Lösen in Methanol oder Zugabe eines Überschusses an MeOH in eine etherische Lösung von 7 in das vollständig Methoxy-substituierte Derivat 8 umgewandelt werden kann. Bei der Umsetzung des Bis(ferrio)-siloxans 6 mit Methanol bzw. H2O als Nucleophil erhält man sowohl das Tetramethoxy- (10a) als auch das eigenkondensationsstabile Tetrahydroxy-disiloxan 10b, welches mit vier Äquivalenten Dimethylchlorsilan zum entsprechenden Hexasiloxan 11 umgesetzt werden kann. D. Primäre Ferrio-silylamine: Synthese und strukturelle Charakterisierung Die Einwirkung von Natriumamid auf die Phosphan-substituierten Ferrio-chlorsilane 2a-c führt zu den entsprechenden primären Ferrio-silylaminen 3a-c, welche die ersten Übergangsmetall-substituierten primären Silylamine darstellen. Die Molekülstruktur von 3b zeigt im Vergleich zu Organosilylaminen eine signifikante Verlängerung für die Si-N-Bindungslänge mit 1.751(4) Å an. / A. Ironfragment-substituted Heterosiloxanes of Aluminium, Gallium and Indium The reaction of the ferrio-silanols 5a-c with trimethylaluminium, triisobutylaluminium, trimethylgallium and trimethylindium, respectively, yields the corresponding ferrio-siloxyalanes, -gallanes and -indanes 7a-d, 8a,b and 9a,b via elimination of alkane as dimeric aggregates. This molecular arrangement is in addition proved by X-ray analysis for 7b,8b,9a and 9b. The diastereomeric ferrio-siloxyalanes, -gallanes and -indanes 8c,9c,11a,b and 12a-c are obtained by reaction of the chiral ferrio-silanols Cp(OC)2Fe-Si(Me)(R)OH and Cp(OC)(Ph3P)Fe-Si(Me)(R)OH with AlMe3, GaMe3 and InMe3, respectively. The aggregation to dimers can be proved directly by NMR-spectroscopy. The alkane eliminiation reaction of the ferrio-silanediols Cp(OC)2Fe-SiR(OH)2 (13a-c) with one or two equivalents of trimethylgallium (6c) or trimethylindium (6e) generates the dimeric ferrio-substituted gallium- and indiumsiloxanols 14a-e (d.r. 50 : 50). The decomposition of 14a-e in solution proceeds via hydrogen transfer from the oxygen to the iron atom with the formation of the polymeric heterosiloxanes [RSi(OEMe2)O]n and iron hydride Cp(OC)2Fe-H. The iron-substituted galliumsiloxanediol 18a, and indiumsiloxanediol 18b are obtained from the ferrio-silanetriol Cp(OC)2Fe-Si(OH)3 (17) via the alkane elimination process with trimethylgallium (6c) or trimethylindium (6e), respectively. The reaction of the ferrio-silanetriol 17 with two equivalents of trimethylgallium (6c) in boiling n-hexane in the presence of four equivalents of THF yields the cage-like heterosiloxane 19. The molecular structure of 19 is also proved by X-ray analysis. The ferriomethyl-substituted heterosiloxanes 21a-d can be easily generated by reaction of the ferriomethyl-silanol Cp(OC)2Fe-CH2-SiMe2OH (20) with the group 13 triorganyls 6b-e. The aggregation to dimers is proved for 21b-d by X-ray analyses and molecular weight determination. B. Phosphine-Substituted Ferrio-Silanols and -Silanetriols: Synthesis and Condensation with Dimethylchlorosilane The double phosphine-substituted ferrio-silanols 4a,b can be generated by hydrolysis of the corresponding ferrio-chlorosilanes 2a,b in the presence of Al2O3 and triethylamine. An alternative approach is offered by the Co2(CO)8-catalyzed H/OH-exchange reaction of the ferrio-silanes 3a,b with water. The confirmation of the intermediate dinuclear species Cp(Me3P)2Fe-Si(Me)(p-Tol)Co(CO)4 (5) is proved by independent synthesis starting from the ferrio-silane 3b and Co2(CO)8. The hydrolysis of the phosphine-substituted ferrio-trichlorosilanes Cp(OC)(Ph3P)Fe-SiCl3 (9) and Cp(Me3P)2Fe-SiCl3 (8b) is achieved either in the two-phase system THF/H2O, or assisted by Al2O3, yielding the ferrio-silanetriols 10 and 11. The ferrio-silanetriols 10,11 are transformed into the corresponding ferrio-tetrasiloxanes 12a,b by the Et3N-assisted condensation with three equivalents of dimethylchlorosilane. C. Polychlorinated Metallo-Siloxanes: Synthesis and Exchange Reaction with Methanol and Water The synthesis of polychlorinated metallo-siloxanes 3-5 can be achieved by reaction of the metalates Na[Fe(CO)2Cp] (1a) and Li[W(CO)2(PMe3)Cp] (1b) with hexachloro-disiloxane (2a) and octachlorotetrasiloxane (2b), respectively. The ferrio-disiloxane 3 can be transformed into the bis(ferrio) species 6 by substitution of a chlorine by another equivalent of sodium ferrate 1a. The NEt3-assisted methanolysis of the ferrio-disiloxane 3 with three equivalents of MeOH yields the trimethoxy-substituted ferrio-disiloxane 7 provided by regiospecific Cl/OMe-exchange at the g-Si-atom. The completely methoxy-substituted derivative 8 is obtained by dissolving 7 in methanol or addition of an excess of MeOH to an ethereal solution of 7. Using methanol or water in a nucleophilic substitution reaction with the bis(ferrio)-siloxane 6 leads to the tetramethoxy- (10a) or the tetrahydroxy-disiloxane 10b, which is stable towards self-condensation and can be converted to the hexasiloxane 11 by addition of four equivalents of dimethylchlorosilane. Reaction of the ferrio-dimethylsilanol Cp(OC)2Fe-SiMe2OH (12) with hexachloro-disiloxane (2a) generates the monometalated trisiloxane 13, which reacts with another equivalent of 12 to the bismetalated tetrasiloxane 14. 13 and 14 can be converted into the fully methoxy-substituted derivatives 15 and 16 by methanolysis in the presence of NEt3. D. Primary Ferrio-Silylamines: Synthesis and Structural Characterization The phosphine-substituted ferrio-chlorosilanes 2a-c react with sodium amide to yield the primary ferrio-silylamines 3a-c, which represent the first transition metal substituted primary silylamines. The molecular structure of 3b reveals a significant elongation of the Si-N-bond length [1.751(4) Å], compared to organosilylamines. The NEt3-assisted reaction of 3a with dimethylchlorosilane yields the ferrio-silazane 4.
5

Generation of Well-Defined Pairs of Silylamine on Highly Dehydroxylated SBA-15: Application to the Surface Organometallic Chemistry of Zirconium

Azzi, Joachim 11 1900 (has links)
Design of a new well-defined surface organometallic species [O-(=Si–NH)2Zr(IV)Np2] has been obtained by reaction of tetraneopentyl zirconium (ZrNp4) on SBA-15 surface displaying mainly silylamine pairs [O-(=Si–NH2)2]. These surface species have been achieved by an ammonia treatment of a highly dehydroxylated SBA-15 at 1000°C (SBA-151000). This support is known to contain mainly strained reactive siloxane bridges (≡Si-O-Si≡)[1] along with a small amount of isolated plus germinal silanols =Si(OH)2. Chemisorption of ammonia occurs primarily by opening these siloxane bridges[2] to generate silanol/silylamine pairs [O-(=Si–NH2)(=SiOH)] followed by substitution of the remaining silanol. Further treatment using hexamethyldisilazane (HMDS) results in the protection of the isolated remaining silanol groups by formation of ≡Si-O-SiMe3 and =Si(OSiMe3)2 but leaves ≡SiNH2 untouched. After reaction of this functionalized surface with ZrNp4, this latter displays mainly a bi-podal zirconium neopentyl organometallic complex [O-(=Si–NH)2Zr(IV)Np2] which has been fully characterized by diverse methods such as infrared transmission spectroscopy, magic angle spinning solid state nuclear magnetic resonance, surface elemental analysis, small angle X-ray powder diffraction (XRD), nitrogen adsorption and energy filtered transmission electron microscopy (EFTEM). These different characterization tools unambiguously prove that the zirconium organometallic complex reacts mostly with silylamine pairs to give a bi-podal zirconium bis-neopentyl complex, uniformly distributed into the channels of SBA-151000. Therefore this new material opens a new promising research area in Surface Organometallic Chemistry which, so far, was dealing mainly with O containing surface. It is expected that vicinal amine functions may play a very different role as compared with classical inorganic supports. Given the importance in the last decades of N containing ligands in catalysis, one may expect important prospects…

Page generated in 0.0391 seconds