Spelling suggestions: "subject:"simulation geant4"" "subject:"simulation geont4""
1 |
Etude de faisabilité d'un détecteur dédié à la discrimination bêta/gamma / Study of the feasibility of a detector dedicated to the beta/gamma discriminationLuo, Yiyan 04 December 2018 (has links)
A des fins de propreté radiologique, les exploitants nucléaires doivent évaluer l'activité surfacique résiduelle, telle que la contamination bêta. Pour cela, les contaminamètres sont essentiels. Dans ce cadre, EDF R&D a proposé un projet de recherche visant à étudier la faisabilité d’un contaminamètre innovant permettant de détecter l’activité surfacique bêta in situ, alors qu’elle est actuellement mesurée ex-situ.L'objectif principal de ce travail est de détecter une contamination bêta surfacique de 0,4 Bq/cm^2 dans un environnement gamma élevé, jusqu'à 100 µSv/h. Cela exige un détecteur ayant une performance de discrimination bêta/gamma élevée. Plusieurs technologies basées sur un scintillateur et/ou un détecteur à gaz ont été étudiées. Des simulations Geant4 ont été effectuées pour optimiser la configuration des technologies retenues (géométrie, matériaux, etc.). Suite à ces simulations, deux prototypes, de type Phoswich, optimisés ont été fabriqués et testés à l’aide de sources bêta et gamma au laboratoire ( LPC Caen). En outre, deux campagnes d’essai ont été menées dans une centrale nucléaire (CNPE de Chinon) afin d'évaluer les performances des prototypes développés dans un bruit de fond gamma réaliste. Les simulations Geant4 et les tests sont discutés dans cette thèse. / For radiological cleanliness purpose, nuclear operators have to assess surface residual activity such as beta contamination. To this aim, contamination monitors are essential. In this context, EDF R&D proposed a research project in order to study the feasibility of an innovative contamination monitor to detect beta surface activity in situ which is until now performed ex situ. The main objective is to detect a 0.4 Bq/cm^2 beta surface contamination in a high gamma background up to 100 μSv/h. This demands the detector to have a high beta/gamma discrimination performance. Several technologies based on scintillator and/or gas filled detector have been investigated. Geant4 simulations have been carried out to optimise the configuration of the chosen detector such as geometry, materials, etc. Two simulation-optimised prototypes based on Phoswich detectors have been developed and tested with beta and gamma sources in a laboratory framework (LPC Caen). Furthermore, two experimental campaigns have been conducted in a nuclear power plant (NPP of Chinon) in order to evaluate the performance of the developed prototypes in a realistic gamma background environment. The Geant4 simulations and the experimental work are discussed in this thesis.
|
2 |
Implémentation de la répartition de charge et du mode TOT pour la simulation d’un détecteur Timepix à pixelsDallaire, Frédérick 03 1900 (has links)
Les détecteurs à pixels Medipix ont été développés par la collaboration Medipix et permettent de faire de l'imagerie en temps réel. Leur surface active de près de $2\cm^2$ est divisée en 65536~pixels de $55\times 55\um^2$ chacun. Seize de ces détecteurs, les Medipix2, sont installés dans l'expérience ATLAS au CERN afin de mesurer en temps réel les champs de radiation produits par les collisions de hadrons au LHC. Ils seront prochainement remplacés par des Timepix, la plus récente version de ces détecteurs, qui permettent de mesurer directement l'énergie déposée dans chaque pixel en mode \textit{time-over-threshold} (TOT) lors du passage d'une particule dans le semi-conducteur.
En vue d'améliorer l'analyse des données recueillies avec ces détecteurs Timepix dans ATLAS, un projet de simulation Geant4 a été amorcé par John Id\'rraga à l'Université de Montréal. Dans le cadre de l'expérience ATLAS, cette simulation pourra être utilisée conjointement avec Athena, le programme d'analyse d'ATLAS, et la simulation complète du détecteur ATLAS.
Sous l'effet de leur propre répulsion, les porteurs de charge créés dans le semi-conducteur sont diffusés vers les pixels adjacents causant un dépôt d'énergie dans plusieurs pixels sous l'effet du partage de charges. Un modèle effectif de cette diffusion latérale a été développé pour reproduire ce phénomène sans résoudre d'équation différentielle de transport de charge. Ce modèle, ainsi que le mode TOT du Timepix, qui permet de mesurer l'énergie déposée dans le détecteur, ont été inclus dans la simulation afin de reproduire adéquatement les traces laissées par les particules dans le semi-conducteur. On a d'abord étalonné le détecteur pixel par pixel à l'aide d'une source de $\Am$ et de $\Ba$. Ensuite, on a validé la simulation à l'aide de mesures d'interactions de protons et de particules $\alpha$ produits au générateur Tandem van de Graaff du Laboratoire René-J.-A.-Lévesque de l'Université de Montréal. / The pixelated Medipix detectors have been developed by the Medipix Collaboration to perform real-time imaging. The semiconducting chip is divided into 65536 pixels of $55\times 55\um^2$ for a total active area of nearly $2\cm^2$. Because of their sensitivity to all kinds of particles, sixteen Medipix2 detectors (ATLAS-MPX) have been placed in the ATLAS detector and its cavern to measure for the radiation produced by the head-on proton collisions produced at the LHC. At the next ATLAS upgrade, the ATLAS-MPX network will be extended to include the Timepix detectors, the latest version that allows one to measure the total energy deposited in the semiconductor.
To improve data analysis, a Geant4 simulation project of a Timepix detector was initiated by John Id\'arraga at the Université de Montréal. In the framework of the ATLAS experiment, this simulation could be used with Athena, the ATLAS analysis software, and the full ATLAS simulation.
Due to their repulsivity, the charge carriers created by an incoming particle in the pixelated detector are spread over the surrounding pixels causing a charge sharing effect. An effective model has been developed to reproduce this effect without resolving the charge drift's differential equation. This model and the \textit{time-over-threshold} mode of the Timepix have been included in the simulation to reproduce the tracks left by the striking particles. First, one had to individually calibrate each pixel of the device with $\Am$ and $\Ba$ sources. The simulation's validation has been performed with low energy protons and $\alpha$ particles delivered by the van de Graaff Tandem at the Laboratoire René-J.-A.-Lévesque of the Université de Montréal.
|
3 |
Implémentation de la répartition de charge et du mode TOT pour la simulation d’un détecteur Timepix à pixelsDallaire, Frédérick 03 1900 (has links)
Les détecteurs à pixels Medipix ont été développés par la collaboration Medipix et permettent de faire de l'imagerie en temps réel. Leur surface active de près de $2\cm^2$ est divisée en 65536~pixels de $55\times 55\um^2$ chacun. Seize de ces détecteurs, les Medipix2, sont installés dans l'expérience ATLAS au CERN afin de mesurer en temps réel les champs de radiation produits par les collisions de hadrons au LHC. Ils seront prochainement remplacés par des Timepix, la plus récente version de ces détecteurs, qui permettent de mesurer directement l'énergie déposée dans chaque pixel en mode \textit{time-over-threshold} (TOT) lors du passage d'une particule dans le semi-conducteur.
En vue d'améliorer l'analyse des données recueillies avec ces détecteurs Timepix dans ATLAS, un projet de simulation Geant4 a été amorcé par John Id\'rraga à l'Université de Montréal. Dans le cadre de l'expérience ATLAS, cette simulation pourra être utilisée conjointement avec Athena, le programme d'analyse d'ATLAS, et la simulation complète du détecteur ATLAS.
Sous l'effet de leur propre répulsion, les porteurs de charge créés dans le semi-conducteur sont diffusés vers les pixels adjacents causant un dépôt d'énergie dans plusieurs pixels sous l'effet du partage de charges. Un modèle effectif de cette diffusion latérale a été développé pour reproduire ce phénomène sans résoudre d'équation différentielle de transport de charge. Ce modèle, ainsi que le mode TOT du Timepix, qui permet de mesurer l'énergie déposée dans le détecteur, ont été inclus dans la simulation afin de reproduire adéquatement les traces laissées par les particules dans le semi-conducteur. On a d'abord étalonné le détecteur pixel par pixel à l'aide d'une source de $\Am$ et de $\Ba$. Ensuite, on a validé la simulation à l'aide de mesures d'interactions de protons et de particules $\alpha$ produits au générateur Tandem van de Graaff du Laboratoire René-J.-A.-Lévesque de l'Université de Montréal. / The pixelated Medipix detectors have been developed by the Medipix Collaboration to perform real-time imaging. The semiconducting chip is divided into 65536 pixels of $55\times 55\um^2$ for a total active area of nearly $2\cm^2$. Because of their sensitivity to all kinds of particles, sixteen Medipix2 detectors (ATLAS-MPX) have been placed in the ATLAS detector and its cavern to measure for the radiation produced by the head-on proton collisions produced at the LHC. At the next ATLAS upgrade, the ATLAS-MPX network will be extended to include the Timepix detectors, the latest version that allows one to measure the total energy deposited in the semiconductor.
To improve data analysis, a Geant4 simulation project of a Timepix detector was initiated by John Id\'arraga at the Université de Montréal. In the framework of the ATLAS experiment, this simulation could be used with Athena, the ATLAS analysis software, and the full ATLAS simulation.
Due to their repulsivity, the charge carriers created by an incoming particle in the pixelated detector are spread over the surrounding pixels causing a charge sharing effect. An effective model has been developed to reproduce this effect without resolving the charge drift's differential equation. This model and the \textit{time-over-threshold} mode of the Timepix have been included in the simulation to reproduce the tracks left by the striking particles. First, one had to individually calibrate each pixel of the device with $\Am$ and $\Ba$ sources. The simulation's validation has been performed with low energy protons and $\alpha$ particles delivered by the van de Graaff Tandem at the Laboratoire René-J.-A.-Lévesque of the Université de Montréal.
|
4 |
Charged particle diagnostics for PETAL, calibration of the detectors and development of the demonstrator / Diagnostics de particules chargées pour PETAL, étalonnage des détecteurs and développement d’un démonstrateurRabhi, Nesrine 06 December 2016 (has links)
Afin de protéger leurs systèmes de détection de l'impulsion électromagnétique géante générée par l'interaction du laser PETAL avec sa cible, les diagnostics de PETAL seront équipés de détecteurs passifs. Pour les ensembles SEPAGE et SESAME, une combinaison d'Imaging Plates (IP) et de couches de protection de matériaux de grand numéro atomique sera utilisée, qui permettra: 1) d'assurer que la réponse des détecteurs sera indépendante de son environnement mécanique proche dans les diagnostics et donc homogène sur toute la détection, 2) de blinder les détecteurs contre les photons de haute énergie produits dans la cible de PETAL. Dans le travail présenté ici, nous avons réalisé des expériences d'étalonnage avec les IPs auprès d'installations générant des électrons, des protons ou des ions, dans le but de couvrir le domaine en énergie cinétique de la détection des particules chargées de PETAL, de 0.1 à 200 MeV. L'introduction a pour but de décrire les méthodes et outils utilisés au cours de cette étude. Le second chapitre présente les résultats de deux expériences réalisées avec des électrons dans le domaine d'énergie cinétique [5-180] MeV. Le troisième chapitre décrit une expérience et ses résultats avec les protons entre 80 et 200 MeV étaient envoyés sur nos détecteurs. Le quatrième chapitre est consacré à une expérience utilisant des protons et des ions entre1 et 22 MeV en énergie de protons et dont l'objectif était l'étude de détecteurs et le test du démonstrateur de SEPAGE. Nous avons utilisé GEANT4 pour l'analyse de nos données et prédire la réponse de nos détecteurs dans le domaine 0.1 à 1000 MeV. / In order to protect their detection against the giant electromagnetic pulse generated by the interaction of the PETAL laser with its target, PETAL diagnostics will be equipped with passive detectors. For SESAME and SEPAGE systems, a combination of imaging plate (IP) detectors with high-Z material protection layers will be used to provide additional features such as: 1) Ensuring a response of the detector to be independent of its environment and hence homogeneous over the surface of the diagnostics; 2) Shielding the detectors against high-energy photons from the PETAL target. In this work, calibration experiments of such detectors based on IPs were performed at electron and proton facilities with the goal of covering the energy range of the particle detection at PETAL from 0.1 to 200 MeV. The introduction aims at providing the reader the methods and tools used for this study. The second chapter presents the results of two experiments performed with electrons in the range from 5 to 180 MeV. The third chapter describes an experiment and its results, where protons in the energy range between 80 and 200 MeV were sent onto detectors. The fourth chapter is dedicated to an experiment with protons and ions in the energy range from 1 to 22 MeV proton energy, which aimed at studying our detector responses and testing the demonstrator of the SEPAGE diagnostic. We used the GEANT4 toolkit to analyse our data and compute the detection responses on the whole energy range from 0.1 to 1000 MeV.
|
5 |
Photon elastic scattering background events in the SuperCDMS SNOLAB experimentHassan, Noah 10 1900 (has links)
Alors que la nouvelle génération de détecteurs directs de matière sombre est en cours de construction, dans l’espoir de trouver de la matière sombre avec une masse inférieure au GeV, il est important de comprendre comment le rayonnement naturel peut produire un fond d’interactions à faible énergie. Cette thèse s’intéressera à la simulation de la diffusion élastique des rayons γ, une source possible de fonds pour les détecteurs de matière sombre sub-GeV. La simulation utilise le logiciel SuperSim basé sur Geant4 afin de modéliser l’expérience SuperCDMS SNOLAB. Une version modifiée du G4JAEAElasticScatteringModel appelée CDMSJAEAElasticScatteringModel a été mise en oeuvre dans SuperSim afin de simuler les mécanismes de diffusion de photon élastiques Rayleigh, nucléaire Thomson et Delbrück. Le CDMSJAEAElasticScatteringModel ajoute la possibilité pour les particules γ de déposer de l’énergie après avoir été diffusées élastiquement. La validité de ces deux modèles a été vérifiée et des erreurs dans le logicielle ont été rencontrées dans leur traitement des distributions d’angle de diffusion des photons qui déterminent les spectres d’énergie déposée. Les sections efficaces totales sont en accord avec la documentation et d’autres sources. Malgré les erreurs logicielles, la simulation définit une limite inférieure sur le taux de diffusion élastique des rayons γ de ∼ 0,01 et ∼ 0,035 photon diffusé élastiquement par kg par an pour les détecteurs SuperCDMS SNOLAB au germanium et au silicium, respectivement. Ces limites inférieures sont définies à l’aide d’une coupure d’énergie de recul de 1 eV. Cela fait de la diffusion élastique des rayons γ une source importante de bruit de fond pour détecteurs SuperCDMS proposés avec des capacités de discrimination ER/NR à des énergies de recul à l’échelle eV. / While the new generation of direct dark matter detectors are being built in the hopes of finding sub-GeV dark matter, it is important to understand how natural radiation can produce a background of low-energy interactions. This thesis will analyze simulating γ-ray elastic scattering, a possible source of background for sub-GeV dark matter detectors. The simulation uses Geant4-based SuperSim software in order to model the SuperCDMS SNOLAB experiment. A modified version of the G4JAEAElasticScatteringModel called CDMSJAEAElasticScatteringModel was implemented into SuperSim in order to simulate the Rayleigh, nuclear Thomson and Delbrück γ-ray elastic scattering mechanisms. The CDMSJAEAElasticScatteringModel adds the ability for the γ particles to deposit energy after being elastically scattered. The validity of both these models was checked, and errors were encountered in their treatment of photon scattering angle distributions which determine the deposited energy spectra. The total cross sections are consistent with the documentation and other sources. Despite the bug, the simulation does set a lower bound on the γ-ray elastic scattering rate of ∼ 0.01 and ∼ 0.035 elastically scattered photon per kg per year for germanium and silicon SuperCDMS SNOLAB detectors, respectively. These lower bounds are set using a 1 eV recoil energy cutoff. In conclusion, γ-ray elastic scattering a significant source of background for proposed SuperCDMS detectors with ER/NR discrimination capabilities at eV-scale recoil energies.
|
Page generated in 0.098 seconds