• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

One-Dimensional Simulation Methods for Distributed Feedback Semiconductor Lasers

Xi, Yanping 01 1900 (has links)
<p> The semiconductor distributed feedback (DFB) laser is mainly characterised by the single-longitudinal-mode operation with a narrow spectral linewidth, which leads to its wide application in fiber-optic communication systems. Several numerical models ranging from physics-based to phenomenological ones have been developed with different level of complexities and for different applications. However, with the continuous improvement in designs of DFB lasers, more efficient simulation methods with sufficient accuracy are highly desirable. In this thesis, I mainly focus on developing new one-dimensional (ID) simulation methods of DFB lasers with improved computational efficiency and physical insight without compromise on accuracy. Further, a new design idea for DFB lasers are explored and investigated by using the simulation techniques developed.</p> <p> Starting with the well-known ID time-dependent coupled-wave equations, we have examined two different solution schemes, i.e. the traveling wave model (TWM) and the standing wave model (SWM). The TWM has the merits of straightforward implementation, and being able to simulate a large variety of the structure even if the laser cavity has a small quality factor (Q-factor). Firstly, the existing time-domain solution schemes are reviewed and compared under a unified framework. A high-order split-step traveling wave method is then developed. Its validity and efficiency are examined through the comparison made with the conventional split-step scheme.</p> <p> For laser structures with large variations of the carrier/photon density, however, the TWM is not computationally economical. The SWM on the other hand has its advantages in dealing with the laser cavity with a relatively large Q-factor. Two different standing wave models are proposed to simulate the index-coupled and gain-coupled DFB lasers, respectively. The complexities of these two numerical models are further reduced through an approximation made on the time-dependent carrier distribution. Finally, the proposed SWMs are reduced to a similar form to the rate equation formulations for establishing the linkage between the 1D model and the rate equation model. More physical insights into the conventional and powerful rate equations will be gained through this linkage.</p> <p> The final part of the thesis focus on the analysis of a novel design of single-mode operation DFB laser employing the dispersive grating. The design idea is verified by the proposed SWM.</p> / Thesis / Doctor of Philosophy (PhD)
2

Lasers femtoseconde Yb3+: BOYS et Yb3+: SYS

Raybaut, Pierre 07 November 2003 (has links) (PDF)
Les travaux exposés dans ce mémoire concernent le développement de lasers femtoseconde entièrement pompés par diodes, utilisant de nouveaux cristaux laser dopés à l'ytterbium, et émettant à une longueur d'onde proche de 1,06 µm. Nous étudions plus particulièrement deux cristaux récemment découverts : l'Yb3+: BOYS (ou Yb3+: Sr3Y(BO3)3) et l'Yb3+: SYS (ou Yb3+: SrY4(SiO4)3O), dont les propriétés cristallographiques, physiques et spectroscopiques sont particulièrement adaptées à la production et à l'amplification d'impulsions brèves (de durées typiques allant de 10-14 à 10-12 s). Dans un premier temps, nous avons réalisé deux oscillateurs femtoseconde basés respectivement sur l'Yb3+: BOYS et l'Yb3+: SYS, qui ont permis de produire des impulsions de durées respectives égales à 69 fs et 94 fs avec une énergie par impulsion de l'ordre du nanojoule, et à une cadence avoisinant la centaine de mégahertz. Le régime impulsionnel a été obtenu par verrouillage de modes passif, dont le démarrage automatique et l'excellente stabilité ont été assurés par un miroir absorbant saturable à semi-conducteur. Dans un deuxième temps, afin d'augmenter l'énergie de ces impulsions, nous avons développé un amplificateur régénératif basé sur l'Yb3+: SYS. Placé en aval d'un oscillateur femtoseconde Yb3+: SYS, cet amplificateur nous a conduit à la production d'impulsions d'une durée de 380 fs, ayant une énergie de 80 µJ, à une cadence de 1 kHz. Enfin, nous avons utilisé un filtre acousto-optique programmable pour modeler l'amplitude spectrale des impulsions qui sont issues de l'oscillateur femtoseconde puis injectées dans l'amplificateur régénératif. Ces expérimentations nous ont ouvert de nouvelles perspectives en validant un modèle théorique (qui a donné lieu à des simulations numériques réalistes de l'amplificateur régénératif), et en améliorant les performances de notre chaîne laser femtoseconde basée sur l'Yb3+: SYS de sorte que des impulsions d'une durée inférieure à 300 fs devrait être produites.

Page generated in 0.1396 seconds