• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 7
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Utilization of forward error correction (FEC) techniques with extensible markup language (XML) schema-based binary compression (XSBC) technology

Norbraten, Terry D. 12 1900 (has links)
Approved for public release, distribution is unlimited / In order to plug-in current open sourced, open standard Java programming technology into the building blocks of the US Navy's ForceNet, first, stove-piped systems need to be made extensible to other pertinent applications and then a new paradigm of adopting extensible and cross-platform open technologies will begin to bridge gaps with old and new weapons systems. The battle-space picture in real time and with as much detail, or as little detail needed is now a current vital requirement. Access to this information via wireless laptop technology is here now. Transmission of data to increase the resolution of that battle-space snapshot will invariably be through noisy links. Noisy links such as found in the shallow water littoral regions of interest will be where Autonomous Underwater and Unmanned Underwater Vehicles (AUVs/UUVs) are gathering intelligence for the sea warrior in need of that intelligence. The battle-space picture built from data transmitted within these noisy and unpredictable acoustic regions demands efficiency and reliability features abstract to the user. To realize this efficiency Extensible Markup Language (XML) Schema-based Binary Compression (XSBC), in combination with Vandermode-based Forward Error Correction (FEC) erasure codes, offer the qualities of efficient streaming of plain text XML documents in a highly compressed form, and a data self-healing capability should there be loss of data during transmission in unpredictable transmission mediums. Both the XSBC and FEC libraries detailed in this thesis are open sourced Java Application Program Interfaces (APIs) that can be readily adapted for extensible, cross-platform applications that will be enhanced by these desired features to add functional capability to ForceNet for the sea warrior to access on demand, at sea and in real-time. These features will be presented in the Autonomous Underwater Vehicle (AUV) Workbench (AUVW) Java-based application that will become a valuable tool for warriors involved with Undersea Warfare (UW). / Lieutenant, United States Navy
22

Reducing turbulence- and transition-driven uncertainty in aerothermodynamic heating predictions for blunt-bodied reentry vehicles

Ulerich, Rhys David 24 October 2014 (has links)
Turbulent boundary layers approximating those found on the NASA Orion Multi-Purpose Crew Vehicle (MPCV) thermal protection system during atmospheric reentry from the International Space Station have been studied by direct numerical simulation, with the ultimate goal of reducing aerothermodynamic heating prediction uncertainty. Simulations were performed using a new, well-verified, openly available Fourier/B-spline pseudospectral code called Suzerain equipped with a ``slow growth'' spatiotemporal homogenization approximation recently developed by Topalian et al. A first study aimed to reduce turbulence-driven heating prediction uncertainty by providing high-quality data suitable for calibrating Reynolds-averaged Navier--Stokes turbulence models to address the atypical boundary layer characteristics found in such reentry problems. The two data sets generated were Ma[approximate symbol] 0.9 and 1.15 homogenized boundary layers possessing Re[subscript theta, approximate symbol] 382 and 531, respectively. Edge-to-wall temperature ratios, T[subscript e]/T[subscript w], were close to 4.15 and wall blowing velocities, v[subscript w, superscript plus symbol]= v[subscript w]/u[subscript tau], were about 8 x 10-3 . The favorable pressure gradients had Pohlhausen parameters between 25 and 42. Skin frictions coefficients around 6 x10-3 and Nusselt numbers under 22 were observed. Near-wall vorticity fluctuations show qualitatively different profiles than observed by Spalart (J. Fluid Mech. 187 (1988)) or Guarini et al. (J. Fluid Mech. 414 (2000)). Small or negative displacement effects are evident. Uncertainty estimates and Favre-averaged equation budgets are provided. A second study aimed to reduce transition-driven uncertainty by determining where on the thermal protection system surface the boundary layer could sustain turbulence. Local boundary layer conditions were extracted from a laminar flow solution over the MPCV which included the bow shock, aerothermochemistry, heat shield surface curvature, and ablation. That information, as a function of leeward distance from the stagnation point, was approximated by Re[subscript theta], Ma[subscript e], [mathematical equation], v[subscript w, superscript plus sign], and T[subscript e]/T[subscript w] along with perfect gas assumptions. Homogenized turbulent boundary layers were initialized at those local conditions and evolved until either stationarity, implying the conditions could sustain turbulence, or relaminarization, implying the conditions could not. Fully turbulent fields relaminarized subject to conditions 4.134 m and 3.199 m leeward of the stagnation point. However, different initial conditions produced long-lived fluctuations at leeward position 2.299 m. Locations more than 1.389 m leeward of the stagnation point are predicted to sustain turbulence in this scenario. / text

Page generated in 0.3645 seconds