• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coarse Woody Debris in Industrially Managed Pinus taeda Plantations of the Southeastern United States

Pittman, Judd R. 25 August 2005 (has links)
Coarse woody debris (CWD) plays an influential role in forested ecosystems by adding organic matter to soils, stabilizing the soil environment, providing wildlife habitat, preventing soil erosion, providing seedling establishment habitat, and involvement in the nutrient cycle. Most CWD research has been conducted in old-growth and unmanaged, second-growth forests. However, less is understood about CWD in intensively managed ecosystems, such as industrialized southern pine plantations. The objectives of this study were to determine the climatic and ecological factors that affect the decomposition rate of CWD, to predict the decomposition rate, specific gravity, and time since death (TSD) using multiple linear regression in industrial loblolly pine (Pinus taeda L.) plantations in the southeastern United States. The study sites for this project were part of a long-term, loblolly pine thinning study maintained by the Loblolly Pine Growth and Yield Research Cooperative at Virginia Tech. Measurements included piece size, position, and decay class. Samples of CWD were collected and analyzed to determine their mass and density. Decomposition rate of CWD was significantly different across position classes and decay classes: disk decomposition rates were significantly negatively correlated with disk diameter, large and small end piece diameter, estimated disk height, and disk dry weight. Average annual precipitation and average annual temperature were not significantly correlated with CWD disk decomposition rate. / Master of Science

Page generated in 0.0143 seconds