• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zvýšení kvality v obrazu obličeje s použitím sekvence snímků / Increasing quality of facial images using sequence of images

Svorad, Adam January 2021 (has links)
Diplomova praca sa zameriava na oblast zaostrovania obrazkov tvari. V teoretickej casti prace budu prezentovane moderne metody zaostrovania obrazkov pomocou jedineho obrazku a metody editacie obrazkov. Prakticka cast sa zameria na pristupy rekonstrukcie obrazkov zo sekvencie poskodenych obrazkov. Viacere modely neuronovych sieti so vstupom pre viacero obrazkov budu zhotovene a vyhodnotene. Alternativny pristup v podobe balika nastrojov na editaciu obrazkov bude taktiez predstaveny. Tieto nastroje budu vyuzivat najmodernejsie pristupy k editacii obrazkov s cielom spojit vizualne prvky tvari zo vstupnej sekvencie obrazkov do jedneho finalneho vystupu. V zavere prace budu vsetky metody navzajom porovnane.
2

A PERFORMANCE COMPARISON OF FRAME STRUCTURES IN WIMAX MULTI-HOP RELAY NETWORKS

Kolomitro, Pandeli 10 September 2010 (has links)
Wireless multi-hop relay systems are the newest amendment to the IEEE 802.16 standard for local and metropolitan area networks, else known as WiMAX. Relay systems come in different flavours, based on their capabilities and have the potential to offer many advantages over the single-hop technology. Upcoming broadband wireless technologies, that utilize multi-hop relays, need good network planning and design in order to achieve their full potential. There are two main types of multi-hop relay stations: transparent, which are not able to transmit control information and non-transparent, which have the capability to transmit such information. This study focuses mainly on non-transparent relay stations due to their complexity and ability to operate in a more than two hop environment. Currently, the latest IEEE amendment provides two different frame structures − single and multi-frame − for utilization in multi-hop relay networks, to allocate bandwidth. The purpose of this thesis is to evaluate the two proposed frame structures, in various network scenarios in terms of delay, throughput, rate, and user capacity. In addition, we will discuss some of the issues that need to be considered to cost effectively plan and design a multi-hop relay network. The evaluation methodology that we utilize is in accordance with the Multi-hop Relay System Evaluation Methodology developed by the IEEE 802.16 Broadband Wireless Access Working Group. To evaluate the above frame structures we developed an evaluation model for use in the network simulator 2 (ns2) from University of California Berkeley, by modifying the light WiMAX (LWX) add-on from Taiwan University. Unlike the original LWX module, which supports only transparent relay configurations, our module supports both multi-frame and single frame structures, as well as non-transparent multi-hop relay environments. To our knowledge there is no previous work, which analyzes the performance of the single frame and multi-frame system in multi-hope relay environments using the guidelines from the latest amendment to the standard (IEEE 802.16j-2009). Moreover, there is no publicly available software that will enable the study of such performance. The resulting source code of our work has been made publicly available and can be obtained from our website. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2010-09-09 23:55:00.995
3

Joint center estimation by single-frame optimization

Frick, Eric 01 December 2018 (has links)
Joint center location is the driving parameter for determining the kinematics, and later kinetics, associated with human motion capture. Therefore the accuracy with which said location is determined is of great import to any and all subsequent calculation and analysis. The most significant barrier to accurate determination of this parameter is soft tissue artifact, which contaminates the measurements of on-body measurement devices by allowing them to move relative to the underlying rigid bone. This leads to inaccuracy in both bone pose estimation and joint center location. The complexity of soft tissue artifact (it is nonlinear, multimodal, subject-specific, and trial specific) makes it difficult to model, and therefore difficult to mitigate. This thesis proposes a novel method, termed Single Frame Optimization, for determining joint center location (though mitigation of soft tissue artifact) via a linearization approach, in which the optimal vector relating a joint center to a corresponding inertial sensor is calculated at each time frame. This results in a time-varying joint center location vector that captures the relative motion due to soft tissue artifact, from which the relative motion could be isolated and removed. The method’s, and therefore the optimization’s, driving assumption is that the derivative terms in the kinematic equation are negligible relative to the rigid terms. More plainly, it is assumed that any relative motion can be assumed negligible in comparison with the rigid body motion in the chosen data frame. The validity of this assumption is investigated in a series of numerical simulations and experimental investigations. Each item in said series is presented as a chapter in this thesis, but retains the format of a standalone article. This is intended to foment critical analysis of the method at each stage in its development, rather than solely in its practical (and more developed) form.

Page generated in 0.0666 seconds