21 |
Coherent Spin Dynamics of a Spin-1 Bose-Einstein CondensateChang, Ming-Shien 11 April 2006 (has links)
Bose-Einstein condensation (BEC) is a phenomenon in which identical bosons occupy the same quantum state below a certain critical temperature. A hallmark of BEC is the coherence between particles every particle shares the same quantum wavefunction and phase. This coherence has been demonstrated for the external (motional) degrees of freedom of the atomic condensates by interfering two condensates. In this thesis, the coherence is shown to extend to the internal spin degrees of freedom of a spin-1 Bose gas evidenced by the observed coherent and reversible spin-changing collisions. The observed coherent dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. Control of the coherent evolution of the system using magnetic fields is also demonstrated. The studies on spinor condensates begin by creating spinor condensates directly using all-optical approaches that were first developed in our laboratory. All-optical formation of Bose-Einstein condensates (BEC) in 1D optical lattice and single focus trap geometries are developed and presented. These techniques offer considerable flexibility and speed compared to magnetic trap approaches, and the trapping potential can be essentially spin-independent and are ideally suited for studying spinor condensates. Using condensates with well-defined initial non-equilibrium spin configuration, spin mixing of F = 1 and F = 2 spinor condensates of rubidium-87 atoms confined in an optical trap is observed. The equilibrium spin configuration in the F = 1 manifold confirms that 87Rb is ferromagnetic. The coherent spinor dynamics are demonstrated by initiating spin mixing deterministically with a non-stationary spin population configuration. Finally, the interplay between the coherent spin mixing and spatial dynamics in spin-1 condensates with ferromagnetic interactions is investigated.
|
22 |
Novel mechanical alignment and component fabrication for wavelength-selective optical switchesWilkinson, Peter John January 2018 (has links)
No description available.
|
23 |
Využití optického vlákna jako senzoru pro lokalizaci mechanického chvění / Optical fibre utilization for localization of mechanical vibrationsParduba, Jiří January 2013 (has links)
The thesis is focused on physical principles of signal transmission by optical fiber and effects that may have influence on such transmission. This knowledge is acquired with regard to future usage of optical fiber as a sensor for detection and localization of mechanical vibration. In the thesis, mentioned knowledge is taken in account and also there are described methods, which allow mechanical vibration for dozens of km. At the conclusion the laboratory sollution is suggested, allowing detection and localization in vast distance with possibility of real test in practice.The testing curcuits are used for measurement and results are processed for purpose of detection and localization of source. The measurement itself was made by testing curcuits and results were processed for purpose of detection and localization of source.
|
24 |
Comparative investigation of methods to determine the group velocity dispersion of an endlessly single-mode photonic crystal fiberBaselt, Tobias, Popp, Tobias, Nelsen, Bryan, Lasagni, Andrés Fabián, Hartmann, Peter 06 September 2019 (has links)
Endlessly single-mode fibers, which enable single mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode guidance. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion GVD based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array and compare the calculation with two methods to measure the wavelength-dependent time delay. We measure the time delay on a three hundred meter test fiber with a homemade supercontinuum light source, a set of bandpass filters and a fast detector and compare the results with a white light interferometric setup. To measure the dispersion of optical fibers with high accuracy, a time-frequency-domain setup based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelength dependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the endlessly single-mode fiber.
|
25 |
Experimental measurement and numerical analysis of group velocity dispersion in cladding modes of an endlessly single-mode photonic crystal fiberBaselt, Tobias, Taudt, Christopher, Nelsen, Bryan, Lasagni, Andrés Fabián, Hartmann, Peter 06 September 2019 (has links)
The optical properties of the guided modes in the core of photonic crystal fibers (PCFs) can be easily manipulated by changing the air-hole structure in the cladding. Special properties can be achieved in this case such as endless singlemode operation. Endlessly single-mode fibers, which enable single-mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode properties. In addition to the guidance of light in the core, different cladding modes occur. The coupling between the core and the cladding modes can affect the endlessly single-mode guides. There are two possible ways to determine the dispersion: measurement and calculation.
We calculate the group velocity dispersion (GVD) of different cladding modes based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array. Based on the scanning electron image, a calculation was made of the optical guiding properties of the microstructured cladding. We compare the calculation with a method to measure the wavelength-dependent time delay. We measure the time delay of defined cladding modes with a homemade supercontinuum light source in a white light interferometric setup. To measure the dispersion of cladding modes of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelengthdependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the cladding modes of an endlessly single-mode fiber.
|
26 |
Analysis of polymeric singlemode waveguides for inter-system communicationWeyers, David, Nieweglowski, Krzysztof, Lorenz, Lukas, Bock, Karlheinz 28 March 2022 (has links)
This paper describes simulation, technology- and process development for the manufacturing of single mode polymeric waveguides by photolithography. Simulations for single mode operation in O- and C-band are carried out. Waveguides are directly patterned with UV-photolithography using Ormocere®-material. Fiber to waveguide coupling and near field are characterized.
|
27 |
Cryogenic Irradiation and Low Temperature Annealing of Semiconductor and Optical MaterialsReinke, Benjamin T. 09 June 2016 (has links)
No description available.
|
28 |
Polymer segmented cladding fibres: cross fibre modelling, design, fabrication and experimentYeung, Anson Chi-Ming, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
This thesis presents the first research on polymer-segmented-cladding-fibre (PSCF), an emerging class of microstructured- optical-fibres (MOFs), which allows single-mode operation with ultra-large-core area. This research covers the modelling, design, fabrication and experiment of the polymer optical cross-fibre (4-period-SCF) whose cross-sectional view resembles a cross. A new wedge waveguide model has been formulated and applied to demonstrate that for any given parameters, the cross fibre gives the same performance for single-mode operation as the N-period-SCFs (for N = 2, 6 and 8). These fibres behave identically if the high-index segment angle, θ1, is the same and the low-index segment angular width, θ2, is sufficiently large for negligible adjacent mode coupling effects. This remarkable finding has significant ramifications for SCF fabrication, design and performance. Theoretical predictions confirmed by experiments demonstrated that a cross-fibre is all that needed to fabricate a large-core single-mode-fibre with no geometry-induced birefringence. The high-index outer ring effects on the cross fibre single-mode performance have been systematically investigated for the first time. The study reveals that the ring index value higher than its core index has very strong effects on single-mode performance. Within a narrow range of θ1, the minimum fibre length required for single-mode operation is reduced but outside this angle range, longer single-mode length is required. Furthermore, the fibre can be anti-guiding if θ1 exceeds the cutoff angle. Incorporating the fabrication constraints, the optimal cross-fibre design with high-index ring is achieved by optimising the relative index difference, high-index segment angle and core-cladding diameter ratio. Two preform-making techniques developed for the cross-fibres fabrication include the cladding-segment-in-tube method and the core-cladding-segment-in-tube method. The innovative approach in these methods overcomes the problems of bubble formation and fractures, which are related to the fibre structure complexity and the polymer intrinsic properties and their processing. It enables the successful drawing of single-mode fibres. This thesis reports the first experimental demonstration of single-mode operation of large-core cross-fibre. Three experimental studies with different cross-fibre designs have demonstrated (i) large-core single-mode operation, (ii) high-index ring effects on fibre performance and (iii) cross-fibre optimal design trial. Apart from this, the 8-period-SCF fibre performance has been demonstrated experimentally.
|
29 |
Experimental multiuser secure quantum communicationsBogdanski, Jan January 2009 (has links)
We are currently experiencing a rapid development of quantum information, a new branch of science, being an interdisciplinary of quantum physics, information theory, telecommunications, computer science, and many others. This new science branch was born in the middle of the eighties, developed rapidly during the nineties, and in the current decade has brought a technological breakthrough in creating secure quantum key distribution (QKD), quantum secret sharing, and exciting promises in diverse technological fields. Recent QKD experiments have achieved high rate QKD at 200 km distance in optical fiber. Significant QKD results have also been achieved in free-space. Due to the rapid broadband access deployment in many industrialized countries and the standing increasing transmission security treats, the natural development awaiting quantum communications, being a part of quantum information, is its migration into commercial switched telecom networks. Such a migration concerns both multiuser quantum key distribution and multiparty quantum secret sharing that have been the main goal of my PhD studies. They are also the main concern of the thesis. Our research efforts in multiuser QKD has led to a development of the five-user setup for transmissions over switched fiber networks in a star and in a tree configuration. We have achieved longer secure quantum information distances and implemented more nodes than other multi-user QKD experiments. The measurements have shown feasibility of multiuser QKD over switched fiber networks, using standard fiber telecom components. Since circular architecture networks are important parts of both intranets and the Internet, Sagnac QKD has also been a subject of our research efforts. The published experiments in this area have been very few and results were not encouraging, mainly due to the single mode fiber (SMF) birefringence. Our research has led to a development of a computer controlled birefringence compensation in Sagnac that open the door to both classical and quantum Sagnac applications. On the quantum secret sharing side, we have achieved the first quantum secret sharing experiment over telecom fiber in a five-party implementation using the "plug & play" setup and in a four-party implementation using Sagnac configuration. The setup measurements have shown feasibility and scalability of multiparty quantum communication over commercial telecom fiber networks.
|
30 |
Polymer segmented cladding fibres: cross fibre modelling, design, fabrication and experimentYeung, Anson Chi-Ming, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
This thesis presents the first research on polymer-segmented-cladding-fibre (PSCF), an emerging class of microstructured- optical-fibres (MOFs), which allows single-mode operation with ultra-large-core area. This research covers the modelling, design, fabrication and experiment of the polymer optical cross-fibre (4-period-SCF) whose cross-sectional view resembles a cross. A new wedge waveguide model has been formulated and applied to demonstrate that for any given parameters, the cross fibre gives the same performance for single-mode operation as the N-period-SCFs (for N = 2, 6 and 8). These fibres behave identically if the high-index segment angle, θ1, is the same and the low-index segment angular width, θ2, is sufficiently large for negligible adjacent mode coupling effects. This remarkable finding has significant ramifications for SCF fabrication, design and performance. Theoretical predictions confirmed by experiments demonstrated that a cross-fibre is all that needed to fabricate a large-core single-mode-fibre with no geometry-induced birefringence. The high-index outer ring effects on the cross fibre single-mode performance have been systematically investigated for the first time. The study reveals that the ring index value higher than its core index has very strong effects on single-mode performance. Within a narrow range of θ1, the minimum fibre length required for single-mode operation is reduced but outside this angle range, longer single-mode length is required. Furthermore, the fibre can be anti-guiding if θ1 exceeds the cutoff angle. Incorporating the fabrication constraints, the optimal cross-fibre design with high-index ring is achieved by optimising the relative index difference, high-index segment angle and core-cladding diameter ratio. Two preform-making techniques developed for the cross-fibres fabrication include the cladding-segment-in-tube method and the core-cladding-segment-in-tube method. The innovative approach in these methods overcomes the problems of bubble formation and fractures, which are related to the fibre structure complexity and the polymer intrinsic properties and their processing. It enables the successful drawing of single-mode fibres. This thesis reports the first experimental demonstration of single-mode operation of large-core cross-fibre. Three experimental studies with different cross-fibre designs have demonstrated (i) large-core single-mode operation, (ii) high-index ring effects on fibre performance and (iii) cross-fibre optimal design trial. Apart from this, the 8-period-SCF fibre performance has been demonstrated experimentally.
|
Page generated in 0.0555 seconds