1 |
C/EBPbeta is a Negative Regulator of Skeletal Muscle DifferentiationLi, Grace T.Y. 20 July 2011 (has links)
C/EBPβ is a bZIP transcription factor known to be involved in various physiological processes, including adipogenesis, osteogenesis and liver development. Previous studies in this laboratory revealed an inhibition of myogenesis and reduced myogenic protein expression in 5-azacytidine treated mesenchymal stem cells retrovirally transduced to overexpress C/EBPβ. The goal of this thesis was to evaluate the role of C/EBPβ in myogenic differentiation by overexpression in C2C12 myoblasts and primary myoblasts. We demonstrate reduced MyoD protein expression and subsequent downregulation of myogenic proteins during differentiation following C/EBPβ overexpression. We localized C/EBPβ to the quiescent Pax7+ satellite cells associated with the muscle fiber. Upon satellite cell activation, we observed the downregulation of C/EBPβ protein expression prior to MyoD protein expression. Furthermore, the re-expression of C/EBPβ correlated with the loss of MyoD expression later in differentiation. Histological analysis of C/EBPβ-/- mice revealed smaller fibers and a reduced Pax7+ satellite cell population as compared to control animals. In this thesis, we propose that C/EBPβ is a negative regulator of skeletal muscle differentiation by inhibiting the expression of MyoD, thus impairing proper progression through the myogenic program. In addition, we propose a role for C/EBPβ in the maintenance of undifferentiatied satellite cells.
|
2 |
C/EBPbeta is a Negative Regulator of Skeletal Muscle DifferentiationLi, Grace T.Y. 20 July 2011 (has links)
C/EBPβ is a bZIP transcription factor known to be involved in various physiological processes, including adipogenesis, osteogenesis and liver development. Previous studies in this laboratory revealed an inhibition of myogenesis and reduced myogenic protein expression in 5-azacytidine treated mesenchymal stem cells retrovirally transduced to overexpress C/EBPβ. The goal of this thesis was to evaluate the role of C/EBPβ in myogenic differentiation by overexpression in C2C12 myoblasts and primary myoblasts. We demonstrate reduced MyoD protein expression and subsequent downregulation of myogenic proteins during differentiation following C/EBPβ overexpression. We localized C/EBPβ to the quiescent Pax7+ satellite cells associated with the muscle fiber. Upon satellite cell activation, we observed the downregulation of C/EBPβ protein expression prior to MyoD protein expression. Furthermore, the re-expression of C/EBPβ correlated with the loss of MyoD expression later in differentiation. Histological analysis of C/EBPβ-/- mice revealed smaller fibers and a reduced Pax7+ satellite cell population as compared to control animals. In this thesis, we propose that C/EBPβ is a negative regulator of skeletal muscle differentiation by inhibiting the expression of MyoD, thus impairing proper progression through the myogenic program. In addition, we propose a role for C/EBPβ in the maintenance of undifferentiatied satellite cells.
|
3 |
C/EBPbeta is a Negative Regulator of Skeletal Muscle DifferentiationLi, Grace T.Y. 20 July 2011 (has links)
C/EBPβ is a bZIP transcription factor known to be involved in various physiological processes, including adipogenesis, osteogenesis and liver development. Previous studies in this laboratory revealed an inhibition of myogenesis and reduced myogenic protein expression in 5-azacytidine treated mesenchymal stem cells retrovirally transduced to overexpress C/EBPβ. The goal of this thesis was to evaluate the role of C/EBPβ in myogenic differentiation by overexpression in C2C12 myoblasts and primary myoblasts. We demonstrate reduced MyoD protein expression and subsequent downregulation of myogenic proteins during differentiation following C/EBPβ overexpression. We localized C/EBPβ to the quiescent Pax7+ satellite cells associated with the muscle fiber. Upon satellite cell activation, we observed the downregulation of C/EBPβ protein expression prior to MyoD protein expression. Furthermore, the re-expression of C/EBPβ correlated with the loss of MyoD expression later in differentiation. Histological analysis of C/EBPβ-/- mice revealed smaller fibers and a reduced Pax7+ satellite cell population as compared to control animals. In this thesis, we propose that C/EBPβ is a negative regulator of skeletal muscle differentiation by inhibiting the expression of MyoD, thus impairing proper progression through the myogenic program. In addition, we propose a role for C/EBPβ in the maintenance of undifferentiatied satellite cells.
|
4 |
C/EBPbeta is a Negative Regulator of Skeletal Muscle DifferentiationLi, Grace T.Y. January 2011 (has links)
C/EBPβ is a bZIP transcription factor known to be involved in various physiological processes, including adipogenesis, osteogenesis and liver development. Previous studies in this laboratory revealed an inhibition of myogenesis and reduced myogenic protein expression in 5-azacytidine treated mesenchymal stem cells retrovirally transduced to overexpress C/EBPβ. The goal of this thesis was to evaluate the role of C/EBPβ in myogenic differentiation by overexpression in C2C12 myoblasts and primary myoblasts. We demonstrate reduced MyoD protein expression and subsequent downregulation of myogenic proteins during differentiation following C/EBPβ overexpression. We localized C/EBPβ to the quiescent Pax7+ satellite cells associated with the muscle fiber. Upon satellite cell activation, we observed the downregulation of C/EBPβ protein expression prior to MyoD protein expression. Furthermore, the re-expression of C/EBPβ correlated with the loss of MyoD expression later in differentiation. Histological analysis of C/EBPβ-/- mice revealed smaller fibers and a reduced Pax7+ satellite cell population as compared to control animals. In this thesis, we propose that C/EBPβ is a negative regulator of skeletal muscle differentiation by inhibiting the expression of MyoD, thus impairing proper progression through the myogenic program. In addition, we propose a role for C/EBPβ in the maintenance of undifferentiatied satellite cells.
|
5 |
Role of Chromatin Associated RNAi Components in Gene Expression Regulation in Mammalian CellsFallatah, Bodor 04 1900 (has links)
RNA interference (RNAi) is an important pathway that regulates gene expression in several organisms. The role of RNAi in post-transcriptional gene silencing in the cytoplasm is well characterized. In contrast, the role of RNAi components in the nucleus remains to be elucidated. Previous reports have indicated that RNAi components (Dicer and Argonaute proteins) and small RNAs act in the nucleus to regulate various pathways including heterochromatin formation, transposable elements repression, RNA Pol II processivity and alternative splicing. Nuclear Ago1 and Dicer have also been found to associate with active promoters and enhancers in mammalian cells, however their functional roles and mechanisms remain elusive. In this work, I investigated the functional role of nuclear RNAi components in gene expression regulation during skeletal muscle differentiation. To address this question, I undertook genomic and biochemical approaches applied to myogenic cells (C2C12) as a model system. I found that Ago1 and Dicer are present in the nucleus of C2C12 cells and expressed during differentiation. Chromatin Immunoprecipitation (ChIP) coupled with high throughput sequencing and quantitative real-time PCR indicate that Ago1 and Dicer are enriched at promoters and enhancer regions of myogenic genes. Interestingly, I found that depletion of Ago1 and Dicer reduces enhancer RNAs (eRNAs) levels at enhancer regions and expression of MyoD during differentiation. I observed that loss of Ago1 impacts differentiation, whereas, loss of Dicer leads to cell death and has severe effects on C2C12 cells. Moreover, using Chromosome Conformation Capture (3C), I revealed that Ago1 is involved in enhancer-promoter interaction at MyoD locus. The knockdown of Ago1 destabilizes these interactions and decreases the expression of MyoD. Finally, I demonstrated that Ago1 binds to eRNAs and interacts with CBP Acetyl-transferase in the nucleus of myotube cells. Ago1 depletion leads to loss of eRNA-CBP interaction and consequent impairment of CBP acetyltransferase activity and failure of MyoD mediated activation of the myogenic program. Taken together, these finding indicate that nuclear Ago1 together with eRNAs and CBP regulates MyoD expression by stimulating histone acetylation during differentiation. This study uncovered a novel function of chromatin associated Ago1 in gene expression regulation during mammalian skeletal muscle differentiation.
|
6 |
Lipin1 regulates skeletal muscle differentiation through the PKC/HDAC5/MEF2c:MyoD -mediated pathwayJama, Abdulrahman M. 24 August 2018 (has links)
No description available.
|
Page generated in 0.1245 seconds