• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

一些可分組設計的矩陣建構 / Some Matrix Constructions of Group Divisible Designs

鄭斯恩, Cheng, Szu En Unknown Date (has links)
在本篇論文中我們使用矩陣來建構可分組設計(GDD), 我們列出了兩種型 式的建構, 第一種 -- 起因於 W.H. Haemers -- A .crtimes. J + I .crtimes. D, 利用此種建構我們將所有符合 r - .lambda.1 = 1 的 (m,n,k,.lambda.1,.lambda.2) GDD 分成三類: (i) A=0 或 J-I, (ii) A 為 .mu. - .lambda. = 1 強則圖的鄰接矩陣, (iii) J-2A 為斜對稱 矩陣的核心。第二種型式為 A .crtimes. D + .Abar .crtimes. .Dbar ,此種方法可以建構出 b=4(r-.lambda.2) 的正規和半正規 GDD 。另外在 論文中, 我們研究在這些建構中出現的相關題目。 / In this thesis we use matrices to construct group divisible designs (GDDs). We list two type of constructions, the first type is -- due to W.H. Heamers -- A .crtimes. J + I .crtimes. D and use this construction we classify all the (m,n,k,. lambda.1, .lambda.2) GDD with r - .lambda.1 = 1 in three classes according to (i) A = 0 or J-I, (ii) A is the adjacency matrix of a strongly regular graph with .mu. - .lambda. = 1, (iii) J - 2A is the core of a skew-symmetric Hadamard matrix. The second type is A .crtimes. D + .Abar .crtimes. .Dbar , this type can construct many regular and semi-regular GDDs with b=4(r-.lambda.2). In the thesis we investigate related topics that occur in these constructions.

Page generated in 0.1119 seconds