• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The identification of epidermal cell envelope precursors

Richards, S. January 1987 (has links)
No description available.
2

Regulated Proenkephalin Expression in Human Skin and Cultured Skin Cells.

Slominski, A.T., Zmijewski, M.A., Zbytek, B., Brozyna, A.A., Granese, J., Pisarchik, A., Szczesniewski, A., Tobin, Desmond J. 11 1900 (has links)
No / Skin responds to environmental stressors via coordinated actions of the local neuroimmunoendocrine system. Although some of these responses involve opioid receptors, little is known about cutaneous proenkephalin expression, its environmental regulation, and alterations in pathology. The objective of this study was to assess regulated expression of proenkephalin in normal and pathological skin and in isolated melanocytes, keratinocytes, fibroblasts, and melanoma cells. The proenkephalin gene and protein were expressed in skin and cultured cells, with significant expression in fibroblasts and keratinocytes. Mass spectroscopy confirmed Leu- and Met-enkephalin in skin. UVR, Toll-like receptor (TLR)4, and TLR2 agonists stimulated proenkephalin gene expression in melanocytes and keratinocytes in a time- and dose-dependent manner. In situ Met/Leu-enkephalin peptides were expressed in differentiating keratinocytes of the epidermis in the outer root sheath of the hair follicle, in myoepithelial cells of the eccrine gland, and in the basement membrane/basal lamina separating epithelial and mesenchymal components. Met/Leu-enkephalin expression was altered in pathological skin, increasing in psoriasis and decreasing in melanocytic tumors. Not only does human skin express proenkephalin, but this expression is upregulated by stressful stimuli and can be altered by pathological conditions.
3

An investigation of the phototoxicity of decabromodiphenyl ether and triclosan

Suh, Yang-Won 01 December 2010 (has links)
Decabromodiphenylether (deca-BDE) and triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) are used in consumer products as flame retardant and bactericide, respectively. Dermal contact is a major human exposure pathway. Deca-BDE and triclosan are known to be photolytically degraded to compounds like lower-BDEs and dioxins. My hypothesis is that photolysis of deca-BDE and triclosan generates free radicals and degradation products which cause toxic effects including cytotoxicity, growth inhibition, oxidative stress and genotoxicity in skin. To test this hypothesis radical formation and photolytic products of deca-BDE and toxic effects of deca-BDE and triclosan alone/with UV-exposure were determined using immortal human keratinocytes (HaCaT) and primary human skin fibroblasts (HSF). My electron paramagnetic resonance and GC-MS studies indicate that deca-BDE is photoreactive and UV irradiation of deca-BDE in organic solvents generates free radicals and lower-BDEs. The free radical formation is wavelength-dependent and positively related to the irradiation time and deca-BDE concentration. In structure-activity relationship studies with deca-BDE, octa-BDE, PBB 209, PCB 209 and diphenyl ether, the presence of halogen atoms (Br > Cl), and/or an ether bond enhance free radical formation. Debromination and hydrogen abstraction from the solvents are the mechanism of radical formation with deca-BDE, which raises concerns about possible toxic effects in UV-exposed skin. In cell culture experiments high levels of triclosan plus UV irradiation and repetitive deca-BDE and UV exposures caused synergistic cytotoxicity in HaCaT. However, neither triclosan nor deca-BDE can be regarded as a phototoxicant following the OECD test and evaluation guidelines. In HSF, no synergistic cytotoxicity was observed, although HSF were more sensitive to deca-BDE and triclosan alone than HaCaT. Contrary to expectations, the photodegradation products of triclosan were less toxic than triclosan itself to HaCaT. However, UV irradiation of triclosan-exposed cells produced a dose dependent increase in intracellular oxidative stress (dichlorofluorescein formation). Comet experiments did not show consistent results of genotoxicity in HaCaT. Overall, deca-BDE and triclosan had no or weak phototoxic potential in cells with the experimental conditions employed. To my knowledge, my research is the first prove of free radical formation during UV irradiation of deca-BDE and the first investigation of phototoxicity of deca-BDE and triclosan in human skin cells.
4

Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair

Mahjour, S.B., Fu, X., Yang, X., Fong, J., Sefat, Farshid, Wang, H. January 2015 (has links)
Yes / Creation of functional skin substitutes within a clinically acceptable time window is essential for timely repair and management of large wounds such as extensive burns. The aim of this study was to investigate the possibility of fabricating skin substitutes via a bottom-up nanofiber-enabled cell assembly approach and using such substitutes for full-thickness wound repair in nude mice. Following a layer-by-layer (L-b-L) manner, human primary skin cells (fibroblasts and keratinocytes) were rapidly assembled together with electrospun polycaprolactone (PCL)/collagen (3:1 w/w, 8% w/v) nanofibers into 3D constructs, in which fibroblasts and keratinocytes were located in the bottom and upper portion respectively. Following culture, the constructs developed into a skin-like structure with expression of basal keratinocyte markers and deposition of new matrix while exhibited good mechanical strength (as high as 4.0 MPa by 14 days). Treatment of the full-thickness wounds created on the back of nude mice with various grafts (acellular nanofiber meshes, dermal substitutes, skin substitutes and autografts) revealed that 14-day-cultured skin substitutes facilitated a rapid wound closure with complete epithelialization comparable to autografts. Taken together, skin-like substitutes can be formed by L-b-L assembling human skin cells and biomimetic nanofibers and they are effective to heal acute full-thickness wounds in nude mice.

Page generated in 0.0616 seconds