• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SPREAD SPECTRUM TT&C FOR THE SKYBRIDGE CONSTELLATION

Nasta, R., Gillot, J.-F. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The SKYBRIDGE constellation will establish telecommunication and TTC links in Kuband, without any exclusive allocation of spectrum: jamming avoidance techniques are used in order to protect the geostationary satellites and associated ground stations that work in the same band. This paper presents the studies that have been carried out at system level.
2

Architecting SkyBridge-CMOS

Li, Mingyu 18 March 2015 (has links)
As the scaling of CMOS approaches fundamental limits, revolutionary technology beyond the end of CMOS roadmap is essential to continue the progress and miniaturization of integrated circuits. Recent research efforts in 3-D circuit integration explore pathways of continuing the scaling by co-designing for device, circuit, connectivity, heat and manufacturing challenges in a 3-D fabric-centric manner. SkyBridge fabric is one such approach that addresses fine-grained integration in 3-D, achieves orders of magnitude benefits over projected scaled 2-D CMOS, and provides a pathway for continuing scaling beyond 2-D CMOS. However, SkyBridge fabric utilizes only single type transistors in order to reduce manufacture complexity, which limits its circuit implementation to dynamic logic. This design choice introduces multiple challenges for SkyBridge such as high switching power consumption, susceptibility to noise, and increased complexity for clocking. In this thesis we propose a new 3-D fabric, similar in mindset to SkyBridge, but with static logic circuit implementation in order to mitigate the afore-mentioned challenges. We present an integrated framework to realize static circuits with vertical nanowires, and co-design it across all layers spanning fundamental fabric structures to large circuits. The new fabric, named as SkyBridge-CMOS, introduces new technology, structures and circuit designs to meet the additional requirements for implementing static circuits. One of the critical challenges addressed here is integrating both n-type and p-type nanowires. Molecular bonding process allows precise control between different doping regions, and novel fabric components are proposed to achieve 3-D routing between various doping regions. Core fabric components are designed, optimized and modeled with their physical level information taken into account. Based on these basic structures we design and evaluate various logic gates, arithmetic circuits and SRAM in terms of power, area footprint and delay. A comprehensive evaluation methodology spanning material/device level to circuit level is followed. Benchmarking against 16nm 2-D CMOS shows significant improvement of up to 50X in area footprint and 9.3X in total power efficiency for low power applications, and 3X in throughput for high performance applications. Also, better noise resilience and better power efficiency can be guaranteed when compared with original SkyBridge fabrics.
3

Modeling and Optimization of Space Use and Transportation for a 3D Walkable City

Mecham, Bradley R. 10 July 2013 (has links) (PDF)
This thesis presents an investigation of a new three-dimensional urban form where walking distances are less than a half-mile and congestion is minimal. The car-free urban form investigated herein is a city composed of skyscrapers massively interconnected with skybridges at multiple levels. The investigation consists of optimizing space use arrangement, skybridge presence or absence, and elevator number to simultaneously minimize total travel time, skybridge light blockage, and elevator energy usage in the city. These objectives are evaluated using three objective functions, the most significant of which involves a three-dimensional, pedestrian-only, three-step version of the traditional four-step planning model. Optimal and diverse designs are discovered with a genetic algorithm that generates always-feasible designs and uses the maximum fitness function. The space use arrangements and travel times of four extreme designs are analyzed and discussed, and the overall results of the investigation are presented. Conclusions suggest that skybridges are beneficial in reducing travel time and that travel times are shorter in cities wherein space use is mixed vertically as well as horizontally.

Page generated in 0.0445 seconds