• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shaking and Balance of a Convertible One- and Two-Cylinder Reciprocating Compressor

Ong, Chin Guan 10 March 2000 (has links)
This research involves the study of a one- and two-cylinder convertible reciprocating Freon compressor for air conditioning or refrigeration purposes. The main concern is the reduction of the vibration (noise) caused during the operation of the compressor. Vibration is a main concern when the compressor is shifted from the one-cylinder operation to the two-cylinder operation mode and the reverse of this shift. The objectives for this research are (1) to investigate the shaking force due to the reciprocating mass at high frequencies, which are up to 4600 Hz (80w) in this research; (2) to determine the dominant force for compressor vibration among the three possible sources of shaking force due to reciprocating mass, impact forces due to clearance at the connecting rod - piston joint, and the z-axis force from the motor torque due to the rotor's conductor rods being skewed at an angle; (3) to minimize the difference in change of kinetic energies when switching between the one- and two-cylinder operating modes of the compressor. The properties of the vibration in one- and two-cylinder operation have been studied and results have been analyzed in terms of kinetic energies generated in different setting of operation of the compressor. Dynamic simulation for the impact force is computed using SIMULINK. The Z-axis force due to the motor is computed. Results indicated that shaking force due to the reciprocating mass is the dominant force for only the first two harmonics (w, 2w). An optimization routine based on Hooke and Jeeves pattern search method is developed and an optimized setting of angle, force, and torque for balancing of the crankshaft to achieve objective (3) is determined. / Master of Science
2

Design of Conjugate Cam Mechanisms for Internal Combustion Engines

Chung, Huai-Sheng 04 January 2012 (has links)
Due to the kinematic limitation of slider-crank mechanisms used in traditional internal combustion engines, such devices driven by their piston motions have a difficulty to reach the better fuel efficiency. In order to make the fuel efficiency better, many engine mechanisms that can be tuned to obtain desired piston motions have been proposed. Since most of the proposed engine mechanisms have complex linkages and bulky size, they become impractical for real applications. The design of a conjugate cam engine mechanism containing a conjugate cam with a slider crank mechanism can be conveniently tuned to produce a desired piston motion in consideration of a limited space, weight, and the number of linkages. The aim of this research is to set up a systematic design and analysis procedure for conjugate cam engine mechanisms. First of all, the kinematic analysis of conjugate cam engine mechanisms is performed based on the rigid body transformation method to determinate the conjugate cam profiles. Then, the geometric properties including the pressure angle and radius of curvature are investigated. Also, in order to characterize the rigid body dynamic behavior of the mechanism, the Newton¡¦s Law is used to derive equations of motion. Finally, it is conducted to design and analyze a real system, and observe the real condition from the experiment to prove the theory is correct.

Page generated in 0.076 seconds