• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Sliding Interface Method for Unsteady Unstructured Parallel Flow Simulations

Blades, Eric Lindsay 11 December 2004 (has links)
The primary objective of this study is to develop a sliding interface method for simulations involving relative rotational grid motion suitable for unstructured grid topologies. The present method alleviates computationally expensive grid deformation, remeshing, and hole cutting procedures. Rotational motion is accomplished by rigidly rotating a subdomain representing the moving component. At the subdomain interface boundary, the faces along the interfaces are extruded into the adjacent subdomain to create new volume elements and provide a one-cell overlap. These new volume elements close the control volumes for the nodes on the interface surface and allow a flux to be computed across the subdomain interface. An interface flux is computed independently for each subdomain. The values of the solution variables and other quantities for the nodes created by the extrusion process are found by interpolation. The extrusion is done so that the interpolation will maintain information as localized as possible. A parallel implementation of the neighbor search is used to find the extruded points in the adjacent subdomain. The method has been implemented in a parallel, node-centered finite volume, high-resolution viscous flow solver. The method does not impose any restrictions on the subdomain interface aside from the axisymmetric limitation required for rotational motion. In addition, the grid on the subdomain interface is arbitrary. The boundary surfaces between the two subdomains can have independent grids from one another. They do not have to connect in a one-to-one manner and there are no symmetry or pattern restrictions placed on the surface grid. A variety of numerical simulations were performed on several small-scale model problems to examine conservation of the interface flux. Overall flux conservation errors were found to be comparable to that for fully connected and fully conservative simulations. In addition, excellent agreement was obtained with both theoretical and experimental results. Three large-scale applications were also used to validate the method and highlight some of the advantages of the sliding interface method compared to the current state-of- the-art for unstructured grid applications. This sliding interface method requires no geometric modifications and has significantly shorter run times Furthermore, there were no apparent adverse effects on the numerical solutions by not strictly enforcing flux conservation at the subdomain boundary.
2

Interfacial Mechanics in Fiber-Reinforced Composites: Mechanics of Single and Multiple Cracks in CMCs

Ahn, Byung Ki 12 February 1998 (has links)
Several critical issues in the mechanics of the interface between the fibers and matrix in ceramic matrix composites (CMCs) are studied. The first issue is the competition between crack deflection and penetration at the fiber/matrix interface. When a matrix crack, the first fracture mode in a CMC, reaches the interface, two different crack modes are possible; crack deflection along the interface and crack penetration into the fibers. A criterion based on strain energy release rates is developed to determine the crack propagation at the interface. The Axisymmetric Damage Model (ADM), a newly-developed numerical technique, is used to obtain the strain energy in the cracked composite. The results are compared with a commonly-used analytic solution provided by He and Hutchinson (HH), and also with experimental data on a limited basis. The second issue is the stress distribution near the debond/sliding interface. If the interface is weak enough for the main matrix crack to deflect and form a debond/sliding zone, then the stress distribution around the sliding interface is of interest because it provides insight into further cracking modes, i.e. multiple matrix cracking or possibly fiber failure. The stress distributions are obtained by the ADM and compared to a simple shear-lag model in which a constant sliding resistance is assumed. The results show that the matrix axial stress, which is responsible for further matrix cracking, is accurately predicted by the shear-lag model. Finally, the third issue is multiple matrix cracking. We present a theory to predict the stress/strain relations and unload/reload hysteresis behavior during the evolution of multiple matrix cracking. The random spacings between the matrix cracks as well as the crack interactions are taken into account in the model. The procedure to obtain the interfacial sliding resistance, thermal residual stress, and matrix flaw distribution from the experimental stress/strain data is discussed. The results are compared to a commonly-used approach in which uniform crack spacings are assumed. Overall, we have considered various crack modes in the fiber-reinforced CMCs; from a single matrix crack to multiple matrix cracking, and have suggested models to predict the microscopic crack behavior and to evaluate the macroscopic stress/strain relations. The damage tolerance or toughening due to the inelastic strains caused by matrix cracking phenomenon is the key issue of this study, and the interfacial mechanics in conjunction with the crack behavior is the main issue discussed here. The models can be used to interpret experimental data such as micrographs of crack surface or extent of crack damage, and stress/strain curves, and in general the models can be used as guidelines to design tougher composites. / Ph. D.

Page generated in 0.1162 seconds