• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 270
  • 85
  • 43
  • 42
  • 34
  • 13
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 619
  • 109
  • 97
  • 62
  • 52
  • 51
  • 46
  • 45
  • 45
  • 43
  • 41
  • 40
  • 39
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

En studie av en industrirobots beteende vid borrning / A study of the behaviour of an Industrial Robot during drilling

Svernestam, Jonas January 2005 (has links)
<p>In the assembly process of airframe structures there are many drilled holes and on some parts the holes are mainly drilled manually with pneumatic handheld drilling machines. During conventional drilling in metal, burrs appear. To remove these burrs the parts of the structure must be separated and deburred before they can be put together for fastening. This is a time consuming measure and therefore expensive. To facilitate this process and lower production costs some parts of the process needs to be automated.</p><p>A part of this thesis was a project in co-operation with Saab, Novator, Specma Automation and the University of Linköping. The purpose of this project was to investigate the ability of an industrial robot to drill holes in aeroplane structures using orbital drilling.</p><p>How the project tests were carried out and the results of these tests are presented in the first part of this thesis. The tests showed that slip-stick appeared when a force was applied on the working object by the robot. Because of the movement of the pressure foot the drilled hole will be in the wrong position and if the movement appears during drilling the quality of the hole is being poor.</p><p>Several different tests were performed using different amounts of forces and different pressure feet trying to prevent slip-stick from appearing. Finally tests were performed with good results concerning the quality of the holes.</p><p>In the second part of this thesis the proceeding tests that were carried out are presented. The purpose of these tests was to find out how the robot acts when a static pressure is applied on a work object by the robot and try to find out what the cause of the slip-stick was. Several tests were done where the robot applied a force on several different points on the fixture and the slip-stick was measured.</p><p>The tests that were carried out during this thesis showed that an industrial robot can be used to drill holes in aeroplane structures. To make sure that the quality of the drilled holes is sufficient for the high demands of the aeroplane industry the working area of the robot is limited to a small area in front of the robot. The slip-stick that appears when the robot is extended into a position on the far side of the robot is too large for the robot to drill the hole in an accurate position.</p> / <p>Vid flygplansmontering borras det många olika hål och på vissa delar borras större delen av dessa hål manuellt med pneumatiska handborrmaskiner. Vid konventionell borrning i metall bildas oönskade grader. Strukturen plockas därför isär så att graderna kan tas bort innan strukturens delar kan passas samman igen för att sammanfogas. Detta är en tidskrävande åtgärd och därmed dyr och i ett steg att förenkla denna process och få en billigare produktion vill man automatisera vissa steg i denna process.</p><p>En del av detta examensarbete var ett projekt i samarbete med Saab, Novator, Specma Automation och Linköpings Universitet vars syfte var att klargöra en robots förmåga att borra hål i flygplansmaterial med orbitalborrningsteknik.</p><p>I första delen av detta examensarbete redovisas genomförande och resultat av projektets tester. Testerna visade att tryckfoten gled på testmaterialets yta när roboten lade en tryckkraft på testplåten, så kallad slip-stick uppkom. Denna glidning gör att det borrade hålet inte hamnar på rätt position och sker glidningen under borroperationen så försämras hålets kvalité. Flera olika tester gjordes med varierad tryckkraft och med olika tryckfötter för att försöka förhindra att slip-stick uppkom. Tester genomfördes där hål borrades med bra kvalité.</p><p>I den andra delen av denna rapport redovisas fortsättningen på examensarbetet som var en vidareundersökning av de tidigare genomförda testerna. Syftet med denna del var att undersöka hur en industrirobot beter sig när den används för att lägga på en tryckkraft mot ett material samt att försöka ta reda på vad som är orsaken till slip-sticken. Fler tester gjordes där roboten tryckte på olika punkter på en fixtur och de uppkomna slip-sticken mättes upp.</p><p>Testerna under detta examensarbete har visat att det går att använda en industrirobot till att borra hål i flyglansmaterial. För att kvaliteten på de borrade hålen ska klara de höga krav som ställs inom flygplansindustrin är robotens arbetsområde begränsat till ett litet fönster mitt framför roboten. De glidningar som uppkommer när robotarmen är utsträckt långt åt sidan om roboten är alldeles för stora för de positioneringskrav som är på hålens placering på flygplansstrukturen.</p>
52

Modeling and analysis of self-excited drill bit vibrations

Germay, Christophe 11 March 2009 (has links)
The research reported in this thesis builds on a novel model developed at the University of Minnesota to analyze the self-excited vibrations that occur when drilling with polycrystalline diamond cutter bits. The lumped parameter model of the drilling system takes into consideration the axial and the torsional vibrations of the bit. These vibrations are coupled through a bit-rock interaction law. At the bit-rock interface, the cutting process combined with the quasihelical motion of the bit leads to a regenerative effect that introduces a coupling between the axial and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion. The response of this complex system is characterized by a fast axial dynamics superposed to the slow torsional dynamics. A two time scales analysis that uses a combination of averaging methods and a singular perturbation approach is proposed to study the dynamical response of the system. An approximate model of the decoupled axial dynamics permits to derive a pseudo analytical expression of the solution of the axial equation. Its averaged behavior influences the slow torsional dynamics by generating an apparent velocity weakening friction law that has been proposed empirically in earlier works. The analytical expression of the solution of the axial dynamics is used to derive an approximate analytical expression of the velocity weakening friction law related to the physical parameters of the system. This expression can be used to provide recommendations on the operating parameters and the drillstring or the bit design in order to reduce the amplitude of the torsional vibrations. Moreover, it is an appropriate candidate model to replace empirical friction laws encountered in torsional models used for control. In this thesis, we also analyze the axial and torsional vibrations by basing the model on a continuum representation of the drillstring rather than on the low dimensional lumped parameter model. The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of the system response predicted by the discrete model are confirmed by this computational model (for example that the occurrence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the rotational speed), new features in the self-excited response of the drillstring are detected. In particular, stick-slip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one (as sometimes observed in field operations), depending on the operating parameters. Finally, we describe the experimental strategy chosen for the validation of the model and discuss results of tests conducted with DIVA, an analog experimental set-up of the lumped parameter model. Some results of the experiments conducted in an artificial rock seem to validate the model studied here although the same experiments obtained with natural rocks were unsuccessful. Different problems with the design of the experimental setup were identified. By using the outcome of the analysis of the uncoupled dynamics, we could provide critical recommendation to elaborate and to design a simpler and stiffer analog experiment (TAZ) used to study the self excitation of the axial dynamics that ultimately lead to the excitation of the torsional dynamics.
53

Splice tests of plain steel bars in concrete

Hassan, N. (Nazmul) 07 March 2011
Fifteen splice specimens reinforced with plain steel bars, including three specimens instrumented with both steel and concrete strain gauges, were tested under monotonically applied four-point loading to develop a database of reliable bond test results and contribute to the development of a reliability based bond provision for plain steel bars to evaluate historical concrete structures. The maximum applied load for the specimens and their observed failure behaviour are reported. In addition to that, a strain compatibility analysis, average bond stress distribution, and flexural section analysis within the lap splice length of the instrumented specimens are also reported.<p> All of the specimens failed in bond within the lap splice length. The load capacity of two specimens reinforced with plain steel bars was 60% of the reported load resistance of specimens with identical geometry and reinforced with deformed bars. The CEB-FIP Model Code provisions for average bond stress of plain steel bars underestimated the maximum applied load recorded for the tested specimens by 16% on average. An empirically derived equation to predict the bond capacity of plain steel bars was determined to be proportional to both the splice length and the nominal bar diameter. <p> Observed cracks in the shear spans remained vertical and suggest the development of arch action within this region. The formation of a large crack at one end of the lap splice length and a review of the load versus deflection behaviour indicated a sudden bond failure of the specimens. Removal of concrete cover at the ends of the lap splice length following testing of the specimens showed evidence of slip of the lapped bars.<p> Instrumented splice specimens provided evidence of bond loss within the lap splice region. As-measured steel strains were higher than those measured for the surrounding concrete due to a loss of strain compatibility. The average bond stress distribution within the lap splice length became more uniform as the applied load approached the maximum applied load. The flexural analysis calculated based on concrete strains above the neutral axis and steel strain provided a reasonable estimate of specimen capacity.
54

Control of Dynamic Stability during Gait Termination on a Slippery Surface

Oates, Alison Robyn January 2007 (has links)
The purpose of this thesis is to investigate the reaction to a purely unexpected slip during gait termination and subsequent experiences stopping on the slippery surface in participants who are young and healthy, older and healthy and who have Parkinson’s disease while on traditional dopamine-replacement medication. Gait termination requires control of the forward momentum of the body’s centre of mass (COM). This forward momentum must be dissipated and the COM held within a newly formed base of support. The challenge of stopping on a slippery surface involves maintaining stability while transitioning from steady-state locomotion to steady-state stance. Experience with a slippery surface changes postural and gait characteristics to diminish the perturbing effect of the slip. The magnitude of the slip response diminishes quickly as the movement becomes more efficient. Our investigations revealed a typical slip response to a purely unexpected slip during gait termination including a lowering of the COM, an increased muscular response to support the body, a shortened step and an arm raise. Knowledge of and experience with the slippery surface quickly changed the slip response to reduce the perturbing effect of the slip and also to increase the efficiency of the response while smoothly transitioning from steady-state locomotion to gait termination. Parkinson’s disease impairs balance control, the ability to switch between motor tasks and also to stop within two steps. The need for a voluntary change in motor programs along with difficulty stopping and increased instability makes gait termination a potentially difficult task for someone with Parkinson’s disease (PD). The participants with PD used a slower, safer strategy to stop on non-slippery surfaces to compensate for their instability compared to age-matched controls. When a slip was first introduced during gait termination, the participants with PD continued to be less stable in the plane of progression than the control group. Despite the instability, the PD group was still able to integrate a balance-correcting response into a voluntary gait termination program. The ability to generate adaptive strategies to integrate the balance-correcting response into a voluntary gait termination program over multiple trials does not appear to be affected by PD; both the control group and PD group showed behavioural modifications according to repeated exposures to the slippery surface. Although participants with PD seemed slightly less stable and walked slower, their behavioural adaptations were similar to the control group.
55

En studie av en industrirobots beteende vid borrning / A study of the behaviour of an Industrial Robot during drilling

Svernestam, Jonas January 2005 (has links)
In the assembly process of airframe structures there are many drilled holes and on some parts the holes are mainly drilled manually with pneumatic handheld drilling machines. During conventional drilling in metal, burrs appear. To remove these burrs the parts of the structure must be separated and deburred before they can be put together for fastening. This is a time consuming measure and therefore expensive. To facilitate this process and lower production costs some parts of the process needs to be automated. A part of this thesis was a project in co-operation with Saab, Novator, Specma Automation and the University of Linköping. The purpose of this project was to investigate the ability of an industrial robot to drill holes in aeroplane structures using orbital drilling. How the project tests were carried out and the results of these tests are presented in the first part of this thesis. The tests showed that slip-stick appeared when a force was applied on the working object by the robot. Because of the movement of the pressure foot the drilled hole will be in the wrong position and if the movement appears during drilling the quality of the hole is being poor. Several different tests were performed using different amounts of forces and different pressure feet trying to prevent slip-stick from appearing. Finally tests were performed with good results concerning the quality of the holes. In the second part of this thesis the proceeding tests that were carried out are presented. The purpose of these tests was to find out how the robot acts when a static pressure is applied on a work object by the robot and try to find out what the cause of the slip-stick was. Several tests were done where the robot applied a force on several different points on the fixture and the slip-stick was measured. The tests that were carried out during this thesis showed that an industrial robot can be used to drill holes in aeroplane structures. To make sure that the quality of the drilled holes is sufficient for the high demands of the aeroplane industry the working area of the robot is limited to a small area in front of the robot. The slip-stick that appears when the robot is extended into a position on the far side of the robot is too large for the robot to drill the hole in an accurate position. / Vid flygplansmontering borras det många olika hål och på vissa delar borras större delen av dessa hål manuellt med pneumatiska handborrmaskiner. Vid konventionell borrning i metall bildas oönskade grader. Strukturen plockas därför isär så att graderna kan tas bort innan strukturens delar kan passas samman igen för att sammanfogas. Detta är en tidskrävande åtgärd och därmed dyr och i ett steg att förenkla denna process och få en billigare produktion vill man automatisera vissa steg i denna process. En del av detta examensarbete var ett projekt i samarbete med Saab, Novator, Specma Automation och Linköpings Universitet vars syfte var att klargöra en robots förmåga att borra hål i flygplansmaterial med orbitalborrningsteknik. I första delen av detta examensarbete redovisas genomförande och resultat av projektets tester. Testerna visade att tryckfoten gled på testmaterialets yta när roboten lade en tryckkraft på testplåten, så kallad slip-stick uppkom. Denna glidning gör att det borrade hålet inte hamnar på rätt position och sker glidningen under borroperationen så försämras hålets kvalité. Flera olika tester gjordes med varierad tryckkraft och med olika tryckfötter för att försöka förhindra att slip-stick uppkom. Tester genomfördes där hål borrades med bra kvalité. I den andra delen av denna rapport redovisas fortsättningen på examensarbetet som var en vidareundersökning av de tidigare genomförda testerna. Syftet med denna del var att undersöka hur en industrirobot beter sig när den används för att lägga på en tryckkraft mot ett material samt att försöka ta reda på vad som är orsaken till slip-sticken. Fler tester gjordes där roboten tryckte på olika punkter på en fixtur och de uppkomna slip-sticken mättes upp. Testerna under detta examensarbete har visat att det går att använda en industrirobot till att borra hål i flyglansmaterial. För att kvaliteten på de borrade hålen ska klara de höga krav som ställs inom flygplansindustrin är robotens arbetsområde begränsat till ett litet fönster mitt framför roboten. De glidningar som uppkommer när robotarmen är utsträckt långt åt sidan om roboten är alldeles för stora för de positioneringskrav som är på hålens placering på flygplansstrukturen.
56

Control of Dynamic Stability during Gait Termination on a Slippery Surface

Oates, Alison Robyn January 2007 (has links)
The purpose of this thesis is to investigate the reaction to a purely unexpected slip during gait termination and subsequent experiences stopping on the slippery surface in participants who are young and healthy, older and healthy and who have Parkinson’s disease while on traditional dopamine-replacement medication. Gait termination requires control of the forward momentum of the body’s centre of mass (COM). This forward momentum must be dissipated and the COM held within a newly formed base of support. The challenge of stopping on a slippery surface involves maintaining stability while transitioning from steady-state locomotion to steady-state stance. Experience with a slippery surface changes postural and gait characteristics to diminish the perturbing effect of the slip. The magnitude of the slip response diminishes quickly as the movement becomes more efficient. Our investigations revealed a typical slip response to a purely unexpected slip during gait termination including a lowering of the COM, an increased muscular response to support the body, a shortened step and an arm raise. Knowledge of and experience with the slippery surface quickly changed the slip response to reduce the perturbing effect of the slip and also to increase the efficiency of the response while smoothly transitioning from steady-state locomotion to gait termination. Parkinson’s disease impairs balance control, the ability to switch between motor tasks and also to stop within two steps. The need for a voluntary change in motor programs along with difficulty stopping and increased instability makes gait termination a potentially difficult task for someone with Parkinson’s disease (PD). The participants with PD used a slower, safer strategy to stop on non-slippery surfaces to compensate for their instability compared to age-matched controls. When a slip was first introduced during gait termination, the participants with PD continued to be less stable in the plane of progression than the control group. Despite the instability, the PD group was still able to integrate a balance-correcting response into a voluntary gait termination program. The ability to generate adaptive strategies to integrate the balance-correcting response into a voluntary gait termination program over multiple trials does not appear to be affected by PD; both the control group and PD group showed behavioural modifications according to repeated exposures to the slippery surface. Although participants with PD seemed slightly less stable and walked slower, their behavioural adaptations were similar to the control group.
57

'Oops! I can't believe I did that!' Inducing Errors in a Routine Action Sequence

Clark, Amanda January 2010 (has links)
‘What was I thinking ?!?’ – No matter age, intelligence or social status, we all experience moments like these. Perhaps it is walking into a room and forgetting what you went there to do or maybe failing to add sugar to your coffee due to an interruption. Regardless, even though many of our daily activities are accomplished through routines that require very little conscious effort, errors of attention or slips of action do occur. This collection of studies was designed with three main questions in mind: 1) can action slips be induced in a laboratory-based task (Slip Induction Task; SIT), 2) how well do currently established theories of action slips explain the errors that are induced within the SIT, and 3) what insight can be gained about preventing such errors? The first experiment was developed to replicate previous findings regarding the effectiveness of the SIT, as well as to determine the extent to which SIT performance correlates with other measures of attention failure. The study discussed in Chapter 3 expands on those results by investigating the effects of healthy aging on slip induction and finds that while older adults were better able to avoid action slips, they appear to sacrifice speed for accurate performance. The goal of the subsequent study was to determine whether young adult participants would also enjoy increased accuracy if they completed the task at a slower pace. Finally, the study discussed in Chapter 5 looks at whether changing the goal of the SIT would alter participants’ ability to inhibit unexpected cue information.
58

Splice tests of plain steel bars in concrete

Hassan, N. (Nazmul) 07 March 2011 (has links)
Fifteen splice specimens reinforced with plain steel bars, including three specimens instrumented with both steel and concrete strain gauges, were tested under monotonically applied four-point loading to develop a database of reliable bond test results and contribute to the development of a reliability based bond provision for plain steel bars to evaluate historical concrete structures. The maximum applied load for the specimens and their observed failure behaviour are reported. In addition to that, a strain compatibility analysis, average bond stress distribution, and flexural section analysis within the lap splice length of the instrumented specimens are also reported.<p> All of the specimens failed in bond within the lap splice length. The load capacity of two specimens reinforced with plain steel bars was 60% of the reported load resistance of specimens with identical geometry and reinforced with deformed bars. The CEB-FIP Model Code provisions for average bond stress of plain steel bars underestimated the maximum applied load recorded for the tested specimens by 16% on average. An empirically derived equation to predict the bond capacity of plain steel bars was determined to be proportional to both the splice length and the nominal bar diameter. <p> Observed cracks in the shear spans remained vertical and suggest the development of arch action within this region. The formation of a large crack at one end of the lap splice length and a review of the load versus deflection behaviour indicated a sudden bond failure of the specimens. Removal of concrete cover at the ends of the lap splice length following testing of the specimens showed evidence of slip of the lapped bars.<p> Instrumented splice specimens provided evidence of bond loss within the lap splice region. As-measured steel strains were higher than those measured for the surrounding concrete due to a loss of strain compatibility. The average bond stress distribution within the lap splice length became more uniform as the applied load approached the maximum applied load. The flexural analysis calculated based on concrete strains above the neutral axis and steel strain provided a reasonable estimate of specimen capacity.
59

Slip point of subcutaneous adipose tissue as an indicator of beef carcass quality

Ward, Lindsay Paige 15 May 2009 (has links)
We hypothesized that slip point of subcutaneous (s.c.) adipose tissue lipids would predict beef carcass quality. To address our hypothesis, 79 M. longissimus dorsi (LD) steaks from cattle of unknown background were used to provide information on slip points, percentage intramuscular lipid, fatty acid composition, and MUFA:SFA ratios. Overlying s.c. adipose tissue was separated from the muscle lean, which contained intramuscular (i.m.) adipose tissue. Lipids were extracted from s.c. adipose tissue and muscle lean by a modified chloroform:methanol procedure and subjected to various analyses. The hypothesis was tested by developing regression equations to determine which fatty acid variables were most useful in predicting carcass composition. There was a high correlation between s.c. MUFA:SFA ratio and s.c. slip points (P < 0.001) with an R2 of 0.557. Also, the MUFA:SFA fatty acid ratios of s.c. and i.m. adipose tissue were significantly correlated and an R2 of 0.440 was observed (P < 0.001) when regressed against each other. The current data set observed s.c. MUFA:SFA ratios (0.73) lower than previous studies, which suggests a population of young or unfinished cattle. This study demonstrated that it is possible to predict the intramuscular lipid (IML) MUFA:SFA ratio by measuring s.c. slip point (R2 of 0.097; P < 0.01). However, our hypothesis of predicting amount of marbling, hence quality grade, from the melting temperature of s.c. adipose tissue lipids proved incorrect (R2 = 0.001). Nonetheless, these data indicate that LD fatty acid composition can be estimated by measuring s.c. adipose tissue slip point.
60

Evolution of Frictional Behavior of Punchbowl Fault Gouges Sheared at Seismic Slip Rates and Mechanical and Hydraulic Properties of Nankai Trough Accretionary Prism Sediments Deformed at Different Loading Paths

Kitajima, Hiroko 2010 December 1900 (has links)
Frictional measurements were made on natural fault gouge at seismic slip rates using a high-speed rotary-shear apparatus to study effects of slip velocity, acceleration, displacement, normal stress, and water content. Thermal-, mechanical-, and fluid-flowcoupled FEM models and microstructure observations were implemented to analyze experimental results. Slightly sheared starting material (Unit 1) and a strongly sheared and foliated gouge (Unit 2) are produced when frictional heating is insignificant and the coefficient of sliding friction is 0.4 to 0.6. A random fabric gouge with rounded prophyroclasts (Unit 3) and an extremely-fine, microfoliated layer (Unit 4) develop when significant frictional heating occurs at greater velocity and normal stress, and the coefficient of sliding friction drops to approximately 0.2. The frictional behavior at coseismic slip can be explained by thermal pressurization and a temperature-dependent constitutive relation, in which the friction coefficient is proportional to 1/T and increases with temperature (temperature-strengthening) at low temperature conditions and decreases with temperature (temperature-weakening) at higher temperature conditions. The friction coefficient, normal stress, pore pressure, and temperature within the gouge layer vary with position (radius) and time, and they depend largely on the frictional heating rate. The critical displacement for dynamic weakening is approximately 10 m or less, and can be understood as the displacement required to form a localized slip zone and achieve a steady-state temperature condition. The temporal and spatial evolution of hydromechanical properties of recovered from the Nankai Trough (IODP NanTroSEIZE Stage 1 Expeditions) have been investigated along different stress paths, which simulate the natural conditions of loading during sedimentation, underthrusting, underplating, overthrusting, and exhumation in subduction systems. Porosity evolution is relatively independent of stress path, and the sediment porosity decreases as the yield surface expands. In contrast, permeability evolution depends on the stress path and the consolidation state, e.g., permeability reduction by shear-enhanced compaction occurs at a greater rate under triaxialcompression relative to uniaxial-strain and isotropic loading. In addition, experimental yielding of sediment is well described by Cam-Clay model of soil mechanics, which is useful to better estimate the in-situ stress, consolidation state, and strength of sediment in nature.

Page generated in 0.0715 seconds