• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE ROLE OF NADPH OXIDASE 2 IN AXON GUIDANCE DURING ZEBRAFISH VISUAL SYSTEM DEVELOPMENT

Aslihan Terzi (9188978) 04 August 2020 (has links)
<p>Reactive oxygen species (ROS) are critical for maintaining cellular homeostasis and function when produced in physiological ranges. Important sources of cellular ROS include NADPH oxidases (Nox), which are evolutionarily conserved multi-subunit transmembrane proteins. Nox-mediated ROS regulate a variety of biological processes including stem cell proliferation and differentiation, calcium signaling, cell migration, and immunity. ROS participate in intracellular signaling by introducing post-translational modifications to proteins and thereby altering their functions. The central nervous system (CNS) expresses different Nox isoforms during both development and adulthood. There is now emerging evidence that Nox-derived ROS also control neuronal development and pathfinding. Our lab has recently shown that retinal ganglion cells (RGCs) from <i>nox2</i> mutant zebrafish exhibit pathfinding errors. However, whether Nox could act downstream of receptors for axonal growth and guidance cues is presently unknown. To investigate this question, we conducted a detailed characterization of the zebrafish <i>nox2</i> mutants that were previously established in our group. Abnormal axon projections were found throughout the CNS of the <i>nox2 </i>mutant zebrafish. Anterior commissural axons failed proper fasciculation, and aberrant axon projections were detected in the dorsal longitudinal fascicle of the spinal cord. We showed that the major brain regions are intact and that the early development of CNS is not significantly altered in <i>nox2 </i>mutants. Hence, the axonal deficits in <i>nox2</i> mutants are not due to general developmental problems, and Nox2 plays a role in axonal pathfinding and targeting. Next, we investigated whether Nox2 could act downstream of slit2/Robo2-mediated guidance during RGC pathfinding. We found that slit2-mediated RGC growth cone collapse was abolished in <i>nox2 </i>mutants <i>in vitro</i>. Further, ROS biosensor imaging showed that slit2 treatment increased growth cone hydrogen peroxide levels via mechanisms through Nox2 activation. Finally, we investigated the possible relationship between slit2/Robo2 and Nox2 signaling <i>in vivo</i>. <i>Astray/nox2</i> double heterozygous mutant larvae exhibited decreased tectal area as opposed to individual heterozygous mutants, suggesting both Nox2 and Robo2 are required for the establishment of retinotectal connections. Our results suggest that Nox2 is part of a signal transduction pathway downstream of slit2/Robo2 interaction regulating axonal guidance cell-autonomously in developing zebrafish retinal neurons.</p>
2

COLLECTIVE CELL MIRATION DURING HEART MORPHOGENESIS IN DROSOPHILA REQUIRES GUIDANCE SIGNALING AND EXTRACELLULAR MATRIX REMODELLING / COLLECTIVE CELL MIGRATION OF CARDIOBLASTS DURING HEART MORPHOGENESIS

Raza, Qanber 11 1900 (has links)
Collective cell migration is a defining feature of many morphogenetic processes. Diseases such as congenital heart diseases and cancer arise due to mis-regulation of collective migratory behaviour and animal models have played a pivotal role in dissecting the molecular mechanisms which underlie this process. During embryonic heart development, cardiac precursors undergo a stage of collective migration in both vertebrates and invertebrates. We developed a paradigm to quantitatively assess collective cell migration of cardiac precursors in live embryos of Drosophila, which is the simplest genetic model organism with a heart. Therefore, we studied processes which are commonly observed in most collective cell migration models such as guidance signalling and extracellular matrix remodelling. Our results demonstrate that leading edge of migrating cardioblasts is highly active and that this behaviour is regulated by guidance cues, Slit and Netrin and their respective receptors Robo/Robo2 and Frazzled/Uncoordinated5. These molecules cooperatively promote leading edge motility and epithelial characteristics of the cardioblasts. Next, we determined that matrix restructuring around the cardioblasts requires proteases Mmp1 and Mmp2, which are members of the highly conserved Matrix Metalloproteinase family. We demonstrate that Mmp1 and Mmp2 have distinct roles during lumen formation, however, both Mmp1 and Mmp2 are required for collective motility of the cardioblast leading edge. Hence, we propose that embryonic heart development in Drosophila is an effective and amenable model of collective cell migration which can be applied to discover unique mechanisms which coordinate cell movement in groups. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0326 seconds