Spelling suggestions: "subject:"slope limiter"" "subject:"slope limite""
1 |
Finite volume simulation of fast transients in a pipe systemMarkendahl, Anders January 2009 (has links)
<p>The MUSCL-Hancock finite volume method with different slope limiters has been analyzed in the context of a fast transient flow problem. A derivation and analysis of the axial forces inside a pipe system due to a flow transient is also performed. </p><p>The following slope limiters were implemented and compared: MC, van Leer, van Albada, Minmod and Superbee. The comparison was based on the method's ability to calculate the forces due to a flow transient inside a pipe system.</p><p>The tests and comparisons in this thesis show that the MC, van Leer, van Albada and Minmod limiters behave very much the same for the flow transient problem. If one would rank these four limiters with respect to the numerical error, the order would be the one presented above, the MC limiter being the most accurate. The error the four limiters produce is mainly of diffusive nature and it is just the magnitude of the diffusion that seems to differ between the methods. One should also note that the workload rank of the four limiters is the same as the order presented above. The MC limiter being the least efficient of the four and the Minmod limiter the most efficient.</p><p>In most of the tests performed the Superbee limiter display a rather negative unpredictable behavior. For some relatively simple cases this particular approach shows big difficulties maintaining the dynamical properties of the force. However, the upside of the Superbee limiter is its remarkable ability to maintain the maximum value of the forces present in the pipe system, preventing underestimation of the maximum magnitude of the force.</p>
|
2 |
Finite volume simulation of fast transients in a pipe systemMarkendahl, Anders January 2009 (has links)
The MUSCL-Hancock finite volume method with different slope limiters has been analyzed in the context of a fast transient flow problem. A derivation and analysis of the axial forces inside a pipe system due to a flow transient is also performed. The following slope limiters were implemented and compared: MC, van Leer, van Albada, Minmod and Superbee. The comparison was based on the method's ability to calculate the forces due to a flow transient inside a pipe system. The tests and comparisons in this thesis show that the MC, van Leer, van Albada and Minmod limiters behave very much the same for the flow transient problem. If one would rank these four limiters with respect to the numerical error, the order would be the one presented above, the MC limiter being the most accurate. The error the four limiters produce is mainly of diffusive nature and it is just the magnitude of the diffusion that seems to differ between the methods. One should also note that the workload rank of the four limiters is the same as the order presented above. The MC limiter being the least efficient of the four and the Minmod limiter the most efficient. In most of the tests performed the Superbee limiter display a rather negative unpredictable behavior. For some relatively simple cases this particular approach shows big difficulties maintaining the dynamical properties of the force. However, the upside of the Superbee limiter is its remarkable ability to maintain the maximum value of the forces present in the pipe system, preventing underestimation of the maximum magnitude of the force.
|
Page generated in 0.289 seconds