1 |
Utilizando Tropes em modelos de recomendação híbridosBatista, Arthur Félix 16 December 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-03-17T14:21:49Z
No. of bitstreams: 2
Dissertação - Arthur F. Batista.pdf: 5010320 bytes, checksum: f4bde5ec1c693b1448050f66844e10ea (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-03-17T14:22:10Z (GMT) No. of bitstreams: 2
Dissertação - Arthur F. Batista.pdf: 5010320 bytes, checksum: f4bde5ec1c693b1448050f66844e10ea (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-03-17T14:22:49Z (GMT) No. of bitstreams: 2
Dissertação - Arthur F. Batista.pdf: 5010320 bytes, checksum: f4bde5ec1c693b1448050f66844e10ea (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-17T14:22:49Z (GMT). No. of bitstreams: 2
Dissertação - Arthur F. Batista.pdf: 5010320 bytes, checksum: f4bde5ec1c693b1448050f66844e10ea (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-12-16 / Recommendation systems (SR) have been widely studied in recent decades. The growth of
the Internet and the consolidation of Web 2.0 have contributed to the emergence of various
services such as social networks, blogs, collaborative platforms, among others, resulting
in increased volume of information. This scenario has fostered the development of new
research on how to use such information to mitigate limitations of SRs and improve their
quality. The recommendation of movies became one of the most discussed topics in the
literature about SRs. The industry also contributed to its popularity with the growth of
streaming services such as Amazon, Netflix, iTunes, and Google Play. In such scenario,
different sources of information in Web have been exploited to extract features to describe
movies. The most common approaches use features such as genre information, movie
direction, cast, etc. Other approaches attempt to characterize the story itself by means of
information about the content of movies, its story structure, elements of narrative and
characters. Such content can be represented by Tropes. Tropes are the elements that make
up a fictional story found in movies, books, comics and other contents. In this work, we
present a systematic study of Tropes, investigating its relevance to the context of a story
and how they can be incorporated in Movie Recommender Systems. The experiments
performed in this research suggest that hybrid models based on the combination of tropes
with the films genres can improve the precision of the predictions about 3% in comparison
to traditional methods. / Sistemas de Recomendação (SR) têm sido amplamente estudados nas últimas décadas.
O crescimento da Internet e a consolidação da Web 2.0 contribuíram para o surgimento
de diversos serviços, como redes sociais, blogs, plataformas colaborativas, entre outros,
resultando no aumento significativo do volume de informação. Este cenário fomentou o
desenvolvimento de pesquisas com o intuito de utilizar tal informação para mitigar algumas
limitações dos SRs e melhorar sua qualidade. A recomendação de filmes tornou-se um dos
tópicos mais abordados na literatura no domínio de SRs junto com comércio eletrônico.
Essa popularidade foi alavancada pela indústria com o crescimento dos serviços de streaming
(Amazon, Netflix, iTunes, Google Play). Neste contexto, diferentes fontes de informação,
tipicamente disponibilizadas por usuários em sítios da Web, vêm sendo exploradas para
extração de características dos filmes. As fontes mais comuns proveem informações como
gênero, direção, elenco, etc. Outras abordagens tentam extrair informações a respeito
do conteúdo dos filmes, como estrutura da história, elementos da narrativa, personagens,
de modo que se possa caracterizar a história em si. Tal conteúdo pode ser representado
através de Tropes. Tropes são elementos que compõem uma história fictícia que pode ser
contada através de filmes, livros, quadrinhos entre outros tipos de mídia. Neste trabalho,
apresentamos um estudo sistemático sobre Tropes, investigando sua relevância para o
contexto de uma história e como podem ser incorporados em Sistemas de Recomendação
de Filmes. Os experimentos executados neste pesquisa sugerem que modelos híbridos
baseados na combinação de tropes com os gêneros dos filmes, podem melhorar a precisão
das previsões em quase 3% em comparação com o métodos tradicionais.
|
2 |
Implementation and Evaluation of a Recommender System Based on the Slope One and the Weighted Slope One AlgorithmYe, Brian, Tieu, Benny January 2015 (has links)
Recommender systems are used on many different websites today and are mechanisms that are supposed to accurately give personalized recommendations of items to a set of different users. An item can for example be movies on Netflix. The purpose of this paper is to implement an algorithm that fulfills five stated goals of the implementation. The goals are as followed: the algorithm should be easy to implement, be effective on query time, accurate on recommendations, put little expectations on users and alternations of algorithm should not have to be changed comprehensively. Slope One is a simplified version of linear regression and can be used to recommend items. By using the Netflix Prize data set from 2009 and the Root-Mean-Square-Error (RMSE) as an evaluator, Slope One generates an accuracy of 1.007 units. The Weighted Slope One, which takes the relevancy of items into the calculation, generates an accuracy of 0.990 units. Adding Weighted Slope One to the Slope One implementation can be done without changing the fundamentals of the Slope One algorithm. It is nearly instantaneous to generate a recommendation of a movie with regular Slope One and Weighted Slope One. However, a precomputing stage is needed for the mechanism. In order to receive a recommendation of the implementation in this paper, the user must at least have rated two items. / Rekommendationssystem används idag på många olika hemsidor, och är en mekanism som har syftet att, med noggrannhet, ge en personlig rekommendation av objekt till en mängd olika användare. Ett objekt kan exempelvis vara en film från Netflix. Syftet med denna rapport är att implementera en algoritm som uppfyller fem olika implementationsmål. Målen är enligt följande: algoritmen ska vara enkel att implementera, ha en effektiv tid på dataförfrågan, ge noggranna rekommendationer, sätta låga förväntningar hos användaren samt ska algoritmen inte behöva omfattande förändring vid alternering. Slope One är en förenklad version av linjär regression, och kan även användas till att rekommendera objekt. Genom att använda datamängden från Netflix Prize från 2009 och måttet Root-Mean-Square-Error (RMSE) som en utvärderare, kan Slope One generera en precision på 1.007 enheter. Den viktade Slope One, som tar hänsyn till varje föremåls relevans, genererar en precision på 0.990 enheter. När dessa två algoritmer kombineras, behövs inte större fundamentala ändringar i implementationen av Slope One. En rekommendation av något objekt kan genereras omedelbart med någon av de två algoritmerna, dock krävs det en förberäkningsfas i mekanismen. För att få en rekommendation av implementationen i denna rapport, måste användaren åtminstone ha värderat två objekt.
|
3 |
A sentiment analysis approach to manage the new item problem of Slope One / En ansats att använda attitydsanalys för att hantera problemet med nya föremål i Slope oneJohansson, Jonas, Runnman, Kenneth January 2017 (has links)
This report targets a specific problem for recommender algorithms which is the new item problem and propose a method with sentiment analysis as the main tool. Collaborative filtering algorithms base their predictions on a database with users and their corresponding ratings to items. The new item problem occurs when a new item is introduced in the database because the item has no ratings. The item will therefore be unavailable as a recommendation for the users until it has gathered some ratings. Products that can be rated by users in the online community often has experts that get access to these products before its release date for the consumers, this can be taken advantage of in recommender systems. The experts can be used as initial guides for predictions. The method that is used in this report relies on sentiment analysis to translate written reviews by experts into a rating based on the sentiment of the text. This way when a new item is added it is also added with the ratings of experts in the field. The result from this study shows that the recommender algorithm slope one can generate more reliable recommendations with a group of expert users than without when a new item is added to the database. The expert users that is added must have ratings for other items as well as the ratings for the new item to get more accurate recommendations. / Denna rapport studerar påverkan av problemet med nya objekt i rekommendationsalgoritmen Slope One och en metod föreslås i rapporten för att lösa det specifika problemet. Problemet uppstår när ett nytt objekt läggs till i en databas då det inte finns några betyg som getts till objektet/produkten. Då rekommendationsalgoritmer som Slope One baserar sina rekommendationer på relationerna mellan användares betyg av filmer så blir träffsäkerheten låg för en rekommendation av en film med få betyg. Metoden som föreslås i rapporten involverar attitydanalys som det huvudsakliga verktyget för att få information som kan ersätta faktiska betyg som användare gett en produkt. När produkter kan bli betygsatta av användare på olika forum på internet så finns det ofta experter får tillgång till produkten innan den släpps till omvärlden, den information som dessa experter har kan användas för att fylla det informationsgap som finns när ett nytt objekt läggs till. Dessa experter kommer då initiellt att användas som guide för rekomendationssystemet. Så när ett nytt objekt läggs till så görs det tillsammans med betyg från experter för att få mer träffsäkra rekomendationer. Resultatet från denna studie visar att Slope One genererar mer träffsäkra rekommendationer då en ny produkt läggs till i databasen med ett antal betyg som genererats genom attitydanalysanalys på experters textrecensioner. Det är värt att notera att ett betyg enbart för dessa expertanvändare inte håller utan experterna måste ha betyg av andra produkter inom samma område för kunna influera rekommendationer för den nya produkten.
|
Page generated in 0.0909 seconds