• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 6
  • 3
  • 1
  • Tagged with
  • 44
  • 44
  • 17
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Slow light in two dimensional semi-conductor photonic crystals / Lumière lente par interactions non linéaires et cavités à cristaux photoniques

Grinberg, Patricio 26 November 2012 (has links)
Nous présentons la combinaison de la propagation de la lumière lente avec les propriétés de résonance d'une cavité à cristal photonique et par le mode lent d'un guide d'ondes à cristal photonique. Nous démontrons théoriquement et expérimentalement que la lumière lente générée par les oscillations cohérentes des populations (OCP) permet d'avoir une cavité de petite taille et ultra-haute facteur de qualité (Q), quels que soient les enjeux technologiques et de design. La démonstration expérimentale est réalisée dans une cavité L3 dans un cristal photonique (CPh) bidimensionnel avec puits quantiques semi-conducteurs, milieu actif dans lequel l'effet OCP est induit. Nous obtenons une facteur-Q de la cavité de 520000 qui correspond à une amélioration de 138 en comparant avec le facteur-Q initial de la cavité. Nous présentons une approche théorique à la combinaison de la lumière lente obtenue par l'effet OCP et le mode lent dans des guides d'ondes à CPh, ce qui montre que l'indice du groupe total correspond à une multiplication des indices de groupes associés à la lumière lente générée par OCP et aux modes lents des guides d'ondes. Nous avons aussi posé les bases pour la démonstration expérimentale, faisant la conception et de la fabrication des échantillons dans les salles blanches du LPN et abordant la difficulté du couplage et de l'extraction de la lumière dans les guides d'ondes à CPh. Une conception particulière des guides d'ondes sous forme de un super réseau qui permet de coupler la lumière perpendiculairement au plan du CPh à partir de l'espace libre est proposée. Le coupleur vertical a été connu et fabriqué le long du guide et a été expérimentalement caractérisé. L'investigation expérimentale de la combinaison de lumière lente basée sur l'effet OCP dans les guides à CPh est toujours en cours. / We report on the combination of slow light propagation with the resonance properties of a photonic crystal (PhC) cavity and with the slow mode of a PhC waveguide. We demonstrate theoretically and experimentally that slow light induced by the Coherent Population Oscillation (CPO) effect enables to have small-size and ultrahigh quality (Q) factor cavity, regardless of the technological and design issues. The experimental proof is performed in a L3 2D PhC cavity with semiconductor quantum wells as active, medium in which the CPO effect is induced. We achieve a cavity Q-factor of 520000, which corresponds to an enhancement by a factor 138 in comparison with the original Q-factor of the cavity. We present a theoretical approach to the combination of CPO-based slow light and slow mode in PhC waveguides, showing that the total group index is a multiplication of the group indices associated respectively to the CPO slow light and to the waveguide slow mode. We also set the basis for the experimental demonstration by designing and fabricating samples in the clean room facilities of LPN and addressing the challenging issue of coupling and extracting light in and from the waveguides. A particular design of the PhC in the waveguide is issued as a grating that allows to couple light perpendicularly to the plane of the PhC from free space. The vertical coupler has also been designed and fabricated along the waveguide and has been experimentally characterized. Slow light based on CPO effect in the PhC waveguides is always under experimental investigation.
22

Cristaux photoniques à fente : vers une photonique silicium hybride à exaltation localisée du champ électromagnétique / Slot Photonic Crystal Waveguides : towards a silicon photonics with a localized exaltation of the electromagnetic field

Caër, Charles 16 September 2013 (has links)
Les travaux de cette thèse apportent une contribution théorique et expérimentale aux études portant sur les cristaux photoniques planaires à fente pour l'exaltation locale du champ électromagnétique. Nous avons étudié la propagation de lumière lente dans des cristaux photoniques à fente en réalisant une ingénierie de dispersion et le confinement de la lumière dans des micro-cavités à fente structurée. Nous avons pour cela effectué des calculs 3D pour optimiser les propriétés de dispersion des cristaux photoniques en structurant la fente elle-même. Cette optimisation a permis d'observer un renforcement de la localisation du champ électromagnétique dans la fente en vue d'un remplissage par des matériaux fortement non linéaires. Nous avons développé un procédé de fabrication pour les cristaux photoniques dans des structures en silicium sur isolant basé sur la lithographie électronique et la gravure plasma. Le régime de lumière lente a été caractérisé expérimentalement et nous a permis de valider la méthode d'optimisation choisie. Des facteurs de ralentissement supérieurs à 10 ont été mesurés dans des dispositifs allant jusqu'à 1 mm de long. Des micro-cavités à fente avec des facteurs de qualité supérieurs à 20000 sur substrat SOI ont été réalisées. Nous avons effectué des mesures d'optique non linéaire dans des guides à cristaux photoniques à fente et avons montré que les effets non linéaires du silicium sont réduits malgré l'exaltation du champ électromagnétique comparés à ceux présents dans des guides à cristaux photoniques standards. Nous avons enfin étudié les pertes le désordre dans ce type de structure par mesures de réflectométrie optique à faible cohérence. / Abstract : The work described in this PhD thesis brings theoretical and experimental contributions to the study of planar slot photonic crystals for a local exaltation of the electromagnetic field. The propagation of slow light in slot photonic crystal waveguides is investigated by achieving dispersion engineering and confinement of light in slotted microcavities. We have performed 3D calculations to optimize the dispersion properties of the photonic crystals by tailoring the slot itself. This allowed the observation of an enhancement of the field localization aiming at the infiltration of the slot by highly nonlinear materials. We achieved a fabrication process of slot photonic crystal waveguides in silicon on insulator (SOI) structures based on electron bearn lithography and plasma et­ ching. Slow light measurements are reported and validate the optimization method. Group indices higher than 20 have been measured in 1 mm long deviees. Slot photonic crystal microcavities with quality factors higher than 20,000 have been achieved on SOI. We have performed nonlinear optical measurements and revealed that silicon nonlinear effects in slot photonic crystal waveguides are reduced compare to standard waveguides, despite the increase of the exaltation of the electromagnetic field. Finally, we have investigated disorder-induced losses in this type of waveguides by opticallow coherence reflectrometry.
23

Slow and stopped light by light-matter coherence control

Tidström, Jonas January 2009 (has links)
In this thesis we study light-matter coherence phenomena related to the interaction of a coherent laser field and the so-called Λ-system, a three-level quantum system (e.g., an atom). We observe electromagnetically induced transparency (EIT), slow and stored light in hot rubidium vapor. For example, a 6 μs Gaussian pulse propagate at a velocity of ~1 km/s (to be compared with the normal velocity of 300 000 km/s). Dynamic changes of the control parameter allows us to slow down a pulse to a complete stop, store it for ~100 μs, and then release it. During the storage time, and also during the release process, some properties of the light pulse can be changed, e.g., frequency chirping of the pulse is obtained by means of Zeeman shifting the energy levels of the Λ-system. If, bichromatic continuous light fields are applied we observe overtone generation in the beating signal, and a narrow `dip' in overtone generation efficiency on two-photon resonance, narrower than the `coherent population trapping' transparency. The observed light-matter coherence phenomena are explained theoretically from first principles, using the Lindblad master equation, in conjunction with the Maxwell's equations. Furthermore, we analyze an optical delay-line based on EIT and show that there is in principle (besides decoherence) no fundamental limitation, but the usefulness today is scant. The combination of EIT and a photonic crystal cavity is inquired into, and we show that the quality value of a small resonator (area of 2.5λ×2.5λ with a missing central rod) can be enhanced by a factor of 500 due to the increased modal density close to two-photon resonance. Open system effects (decoherence effects) are thoroughly investigated using a coherence vector formalism, furthermore, a vector form of the Lindblad equation is derived. Specifically we find an open system channel that lead to slow light and gain. / QC 20100812
24

Silicon integrated nanophotonic devices for on-chip optical interconnects

Lin, Che-Yun 12 July 2012 (has links)
Silicon is the dominant material in Microelectronics. Building photonic devices out of silicon can leverage the mature processing technologies developed in silicon CMOS. Silicon is also a very good waveguide material. It is highly transparent at 1550nm, and it has very high refractive index of 3.46. High refractive index enables building high index contrast waveguides with dimensions close to the diffraction limit. This provides the opportunity to build highly integrated photonic integrated circuit that can perform multiple functions on the same silicon chip, an optical parallel of the electronic integrated circuit. However, silicon does not have some of the necessary properties to build active optical devices such as lasers and modulators. For Example, silicon is an indirect band gap material that can’t be used to make lasers. The centro-symmetric crystal structure in silicon presents no electro-optic effect. By contrast, electro-optic polymer can be engineered to show very strong electro-optic effect up to 300pm/V. In this research we have demonstrated highly compact and efficient devices that utilize the strong optical confinement ability in silicon and strong electro-optic effect in polymer. We have performed detailed investigations on the optical coupling to a slow light waveguide and developed solutions to improve the coupling efficiency to a slow light photonic crystal waveguides (PCW). These studies have lead to the demonstration of the most hybrid silicon modulator demonstrate to date and a compact chip scale true time delay module that can be implemented in future phased array antenna systems. In the future, people may be able to realize a photonic integrated circuit for optical communication or sensor systems using the devices we developed in our research. / text
25

Lumière lente par amplification paramétrique dans les fibres optiques biréfringentes / Slow light by parametric amplification in birefringent optical fibers

Nasser, Nour 06 June 2013 (has links)
Cette thèse a pour thème le processus physique de ralentissement de la lumière induit par amplification paramétrique vectorielle dans les fibres optiques biréfringentes. Notre première étude porte sur la lumière lente induite par amplification paramétrique vectorielle dans les fibres fortement biréfringentes. Contrairement au processus scalaire, nous montrons théoriquement que le processus vectoriel offre la possibilité de créer des bandes de gain paramétrique étroites et éloignées de la pompe, permettant de générer des retards optiques très importants, un ordre de grandeur supérieurs à ceux obtenus en amplification paramétrique scalaire. Des résultats analytiques et issus de simulations numériques dans le cas de dispersion normale ainsi que dans le cas de dispersion anormale sont présentés. Ensuite, nous discutons des principales limitations au retard optique (élargissement de l’impulsion pompe notamment) et nous étudions l’influence positive de l’effet Raman sur le retard optique. Notre seconde étude est consacrée à la lumière lente induite par amplification paramétrique dans les fibres faiblement biréfringentes. Nous traitons l’ensemble des configurations possibles d’instabilité de polarisation selon l’état initial de polarisation de l’impulsion pompe et du régime de dispersion. Nous démontrons clairement que la configuration correspondant à une impulsion pompe polarisée suivant l’axe lent de la fibre et une impulsion signal polarisée suivant l’axe rapide en régime de dispersion normale donne des retards optiques les plus important / This thesis aims to the physical process of slow light induced by vector parametric amplification in highly and weakly birefringent optical fibers. Our first study concerns slow light induced by parametric amplification in highly birefringent fibers. Unlike the scalar process, we theoretically demonstrate that large optical delays can be in principle generated in birefringent fibers, one order of magnitude higher than for the scalar case. Both analytical and numerical results in the case of anomalous dispersion are presented. We further discuss the main limitations for slow light optical delays (signal pulse broadening, pump pulse depletion). The influence of the Raman gain is also studied both analytically and numerically. The second study focuses on slow light induced by parametric amplification in weakly birefringent fibers. We consider all possible configurations of polarization modulation instability, depending on the polarization axis of the pump pulse and on the dispersion regime, and we derive the slow-light optical delays. We clearly demonstrate that the configuration corresponding to a pump pulse polarized in the slow axis of the fiber and a signal pulse polarized on the fast axis, in the normal dispersion regime, gives the largest optical delays.
26

Attenuation and Photodetection of Sub-Bandgap Slow Light in Silicon-on-Insulator Photonic Crystal Waveguides

Gelleta, John L. 04 1900 (has links)
<p>A glass-clad, slow-light photonic-crystal waveguide is proposed as a solution to sub-bandgap light detection in silicon photonic circuits. Such detection in silicon is perceived as a challenge owing to silicon's indirect band gap and transparency to 1550nm wavelengths, yet is essential for achieving low-cost, high-yield integration with today's microelectronics industry. Photonic crystals can be engineered in such a way as to enhance light-matter interaction over a specific bandwidth via the reduction of the group velocity of the propagating wave (i.e. the slowing of light). The interaction enhanced for light detection in the present work is electron-hole pair generation at defect sites. The intrinsic electric field of a p-i-n junction enables light detection by separating the electron-hole pairs as a form of measurable current. The photonic-crystal waveguides are designed to have bandwidths in the proximity of a wavelength of 1550nm. Refractive indices of over 80 near the photonic-crystal waveguide's Brillouin zone boundary are measured using Fourier transform spectral interferometry and are found to correspond to numerical simulations. Defect-induced propagation loss was seen to scale with group index, from 400dB/cm at a group index of 8 to 1200dB/cm at a group index of 88. Scaling was sublinear, which is believed to be due to the spreading of modal volume at large group index values. Photodetectors were measured to have responsivities as high as 34mA/W near the photonic-crystal waveguide's Brillouin zone boundary for a reverse bias of 20V and a remarkably short detector length of 80um. The fabrication of each device is fully CMOS-compatible for the sake of cost-effective integration with silicon microelectronics.</p> / Master of Applied Science (MASc)
27

Passive and active silicon photonics devices at TLC telecommunication wavelengths for on-chip optical interconnects

Zanzi, Andrea 02 September 2020 (has links)
[EN] Optical technologies are the backbone of modern communication systems providing high-speed access to the Internet, efficient inter and intra-data center interconnects and are expending towards growing research fields and new markets such as satel- lite communications, LIDARs (Laser Imaging Detection and Ranging) applications, Neuromorphic computing, and programable photonic circuits, to name a few. Be- cause of its maturity and low-cost, silicon photonics is being leveraged to allow these new technologies to reach their full potential.As a result, there is a strong need for innovative, high-speed and energy-efficient photonic integrated building blocks on the silicon platform to increase the readiness of silicon photonic integrated circuits. The work developed and presented in this thesis is focused on the design and char- acterization of advanced passive and active devices, for photonic integrated circuits. The thesis consists of three main chapters as well as a motivation and concluding sections exposing the rationale and the accomplishments of this work. Chapter one describes the design and characterization of an electro-optical Mach-Zehnder mod- ulator embedded in highly efficient vertical pn junction exploiting the free-carrier dispersion effect in the O-band.. Chapter two is devoted to the design and charac- terization of a novel geometry of asymmetrical multimode interference device and its implementation in a Mach-Zehnder modulator. Chapter three is dedicated to the design and characterization of innovative 1-dimensional photonic crystal designs for slow- lightmodulation applications. An extensive analysis of the main trade-off arising from the use of slow light is presented. / [ES] Las tecnologías ópticas son el eje vertebrador de los sistemas de comunicación mod- ernos que proporcionan acceso de alta velocidad a la Internet, interconexiones efi- cientes entre centros de datos y dentro de ellos. Además, se están expandiendo hacia campos de investigación crecientes y nuevos mercados como son las aplicaciones de comunicaciones por satélite, los LIDAR (Laser Imaging Detection and Ranging), la computación neuromórfica y los circuitos fotónicos programables, por nombrar algunos. La fotónica de silicio está considerada y aceptada ampliamente como una de las tecnologías clave para que dichas aplicaciones puedan desarrollarse. Como resultado, hay una fuerte necesidad de estructuras fotónicas básicas integradas que sean innovadoras, que soporten altas velocidades de transmisión y que sean más eficientes en términos de consumo de potencia, a fin de aumentar la capacidad de los circuitos integrados fotónicos de silicio. El trabajo desarrollado y presentado en esta tesis se centra en el diseño y la car- acterización de dispositivos avanzados pasivos y activos, para circuitos fotónicos integrados. La tesis consta de tres capítulos principales, así como de sendas sec- ciones de motivación y conclusiones que exponen los fundamentos y los logros de este trabajo. El capítulo uno describe el diseño y la caracterización de un modulador electro-óptico Mach-Zehnder incorporado en una unión pn vertical altamente eficien- ciente que explota el efecto de dispersión de plasma en banda O. El capítulo dos está dedicado al diseño y caracterización de una nueva geometría de dispositivo de interferencia multimodo asimétrico y su aplicación en un modulador Mach-Zehnder. El capítulo tres está dedicado al diseño y caracterización de innovadores cristales fotónicos unidimensionales para aplicaciones de modulación con luz lenta. Se pre- senta un amplio análisis de los principales retos derivados del uso de la misma. / [CA] Les tecnologies òptiques són l'eix vertebrador d'aquells sistemes de comunicació moderns que proporcionen accés d'alta velocitat a la Internet, així com intercon- nexions eficients inter i entre centres de dades. A més a més, s'estan expandint cap a camps d'investigació creixents i nous mercats com són les aplicacions de co- municacions per satèl·lit, els LIDAR (Laser Imaging Detection and Ranging), la computació neuromòrfica i els circuits fotònics programables, entre d'altres. La fotònica de silici és considerada i acceptada àmpliament com una de les tecnologies clau i necessàries perquè aquestes aplicacions puguen desenvolupar-se. Per aquest motiu, es fa necessària l'existència d'estructures fotòniques bàsiques integrades que siguen innovadores, que suporten altes velocitats de transmissió i que siguen més eficients en termes de consum de potència, a fi d'augmentar la capacitat dels cir- cuits integrats fotònics de silici. El treball desenvolupat i presentat en aquesta tesi se centra en el disseny i la caracterització de dispositius avançats passius i actius, per a circuits fotònics integrats. La tesi consta de tres capítols principals, així com d'una secció de motivació i una altra de conclusions que exposen els fonaments i els assoliments d'aquest treball. El capítol u descriu el disseny i la caracterització d'un modulador electro-òptic Mach-Zehnder incorporat en una unió pn vertical d'alta efi- ciència que explota l'efecte de dispersió de plasma en la banda O. El capítol dos està dedicat al disseny i caracterització d'una nova geometria de dispositiu d'interferència multimode asimètric així com a la seua aplicació en un modulador Mach-Zehnder. El capítol tres està dedicat al disseny i caracterització d'innovadors cristalls fotònics unidimensionals per a aplicacions de modulació amb llum lenta. S'inclou també una anàlisi detallada dels principals reptes derivats de l'ús d'aquest tipus de llum. / I want to thank you the Generelitat Valenciana and the European Project L3MATRIX for the funding, without them my doctorate would not taken place. / Zanzi, A. (2020). Passive and active silicon photonics devices at TLC telecommunication wavelengths for on-chip optical interconnects [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149377
28

Active slow light in silicon photonic crystals : tunable delay and Raman gain

Rey, Isabella H. January 2012 (has links)
In the past decade, great research effort was inspired by the need to realise active optical functionalities in silicon, in order to develop the full potential of silicon as a photonic platform. In this thesis we explore the possibility of achieving tunable delay and optical gain in silicon, taking advantage of the unique dispersion capabilities of photonic crystals. To achieve tunable optical delay, we adopt a wavelength conversion and group velocity dispersion approach in a miniaturised engineered slow light photonic crystal waveguide. Our scheme is equivalent to a two-step indirect photonic transition, involving an alteration of both the frequency and momentum of an optical pulse, where the former is modified by the adiabatic tuning possibilities enabled by slow light. We apply this concept in a demonstration of continuous tunability of the delay of pulses, and exploit the ultrafast nature of the tuning process to demonstrate manipulation of a single pulse in a train of two pulses. In order to address the propagation loss intrinsic to slow light structures, with a prospect for improving the performance of the tunable delay device, we also investigate the nonlinear effect of stimulated Raman scattering as a means of introducing optical gain in silicon. We study the influence of slowdown factors and pump-induced losses on the evolution of a signal beam along the waveguide, as well as the role of linear propagation loss and mode profile changes typical of realistic photonic crystal structures. We then describe the work conducted for the experimental demonstration of such effect and its enhancement due to slow light. Finally, as the Raman nonlinearity may become useful also in photonic crystal nanocavities, which confine light in very small volumes, we discuss the design and realisation of structures which satisfy the basic requirements on the resonant modes needed for improving Raman scattering.
29

Photonic crystal waveguides in chalcogenide glasses

Spurny, Marcel January 2011 (has links)
The growing speed and bandwidth requirements of telecommunication systems demand all-optical on-chip solutions. Microphotonic devices can deliver low power nonlinear signal processing solutions. This thesis looks at the slow light photonic crystals in chalcogenide glasses to enhance low power nonlinear operation. I demonstrate the development of new fabrication techniques for this delicate class of materials. Both, reactive ion etching and chemically assisted ion beam etching are investigated for high quality photonic crystal fabrication. A new resist-removal technique was developed for the chemical, mechanical and light sensitive thin films. I have developed a membraning method based on vapor phase etching in combination with the development of a save and economical etching tool that can be used for a variety of vapour phase processes. Dispersion engineered slow light photonic crystals in Ge₃₃As₁₂Se₅₅ are designed and fabricated. The demonstration of low losses down to 21±8dB/cm is a prerequisite for the successful demonstration of dispersion engineered slow light waveguides up to a group index of around n[subscript(g)] ≈ 40. The slow light waveguides are used to demonstrate highly efficient third harmonic generation and the first advantages of a pure chalcogenide system over the commonly used silicon. Ge₁₁.₅As₂₄24Se₆₄.₅ is used for the fabrication of photonic crystal cavities. Quality factors of up to 13000 are demonstrated. The low nonlinear losses have enabled the demonstration of second and third harmonic generation in those cavities with powers up to twice as high as possible in silicon. A computationally efficient model for designing coupled resonator bandpass filters is used to design bandpass filters. Single ring resonators are fabricated using a novel method to define the circular shape of the rings to improve the fabrication quality. The spectral responses of the ring resonators are used to determine the coupling coefficient needed for the design and fabrication of the bandpass filters. A flat top bandpass filter is fabricated and characterized as demonstration of this method. A passive all-optical regenerator is proposed, by integrating a slow-light photonic crystal waveguide with a band-pass filter based on coupled ring resonators. A route of designing the regenerator is proposed by first using the dispersion engineering results for nonlinear pulse propagation and then using the filter responses to calculate the nonlinear transfer function.
30

Propagation loss in slow light photonic crystal waveguides

Schulz, Sebastian Andreas January 2012 (has links)
The field of nanophotonics is a major research topic, as it offers potential solutions to important challenges, such as the creation of low power, high bandwidth interconnects or optical sensors. Within this field, resonant structures and slow light waveguides are used to improve device performance further. Photonic crystals are of particular interest, as they allow the fabrication of a wide variety of structures, including high Q-factor cavities and slow light waveguides. The high scattering loss of photonic crystal waveguides, caused by fabrication disorder, however, has so far proven to be the limiting factor for device applications. In this thesis, I present a detailed study of propagation loss in slow light photonic crystal waveguides. I examine the dependence of propagation loss on the group index, and on disorder, in more depth than previous work by other authors. I present a detailed study of the relative importance of different components of the propagation loss, as well as a calculation method for the average device properties. A new calculation method is introduced to study different device designs and to show that photonic crystal waveguide propagation loss can be reduced by device design alone. These “loss engineered” waveguides have been used to demonstrate the lowest loss photonic crystal based delay line (35 dB/ns) with further improvements being predicted (< 20 dB/ns). Novel fabrication techniques were investigated, with the aim of reducing fabrication disorder. Initial results showed the feasibility of a silicon anneal in a nitrogen atmosphere, however poor process control led to repeatability issues. The use of a slow-fast-slow light interface allowed for the fabrication of waveguides spanning multiple writefields of the electron-beam lithography tool, overcoming the problem of stitching errors. The slow-fast-slow light interfaces were combined with loss engineering waveguide designs, to achieve an order of magnitude reduction in the propagation loss compared to a W1 waveguide, with values as low as 130 dB/cm being achieved for a group index around 60.

Page generated in 0.4584 seconds