Spelling suggestions: "subject:"show selenization process""
1 |
Fabrication of CI(G)S Thin-film Solar Cell by SelenizationHsu, Wei-Chih 28 August 2011 (has links)
Since the phase stability region of CuInSe2 (CIS) extends as wide as a few atomic percent, composition variation in a microscopic scale is nature to this material and can be detected by EPMA or TEM-EDS. As the detection volume is kept as small as possible (e.g. we used an electron probe with a diameter of 3nm to measure a TEM specimen thinned by a focused ion beam to a 80 nm thickness), the composition data fluctuate rather significantly. For a near-stoichiometric CIS film prepared by co-evaporation or a selenized film using binary selenides as precursor, the composition variations in a nanometer scale were quite distinct. Due to the tedious procedures for making TEM specimens and doing measurements, we normally used EPMA for the composition analysis. Although the composition was measured in a micrometer scale, its variation still can be detected and expressed by the standard deviation. Our results showed that the selenized films prepared by using binary selenides as precursors (they were used to make the device in this work) had much better composition uniformity as compared with the films selenized from the elemental precursors. We also found that even the time period for the selenization process was short (rapid thermal selenization) or long (conventional selenization), the composition variation did not make any changes.
Since there still has problems for making devices by using rapid thermal selenization, we successfully fabricated the CIS thin-film solar cells through the conventional selenization processes. The I-V characteristics of the best CIS cell is in the following: Voc=0.398 V, Jsc=41.14 mA/cm2, fill factor (FF)=54.58%, efficiency= 9.29%. We also made a CIGS cell and found that the open circuit voltage was increased to 0.461 V. However, the efficiency was 4.42%. It still needs more effort to boost its short circuit current and fill factor.
|
Page generated in 0.1439 seconds