• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 59
  • 28
  • 19
  • 18
  • 18
  • 14
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Bioleaching of heavy metals from anaerobically digested sewage sludge using isolated indigenous iron- and sulphur-oxidizing bacteria

Chan, Lau Chi 01 January 2001 (has links)
No description available.
32

Characterization of anaerobic membrane digesters for stabilization of waste activated sludge

Dagnew, Martha January 2010 (has links)
Anaerobic membrane bioreactors may provide a sustainable technological solution for digestion of waste activated sludge due to their capacity to achieve substantial volatile solids (VS) destruction and positive energy balances with reduced digester volumes. However, membrane integrated anaerobic systems may have limitations that are imposed by membrane fouling and a decrease in biomass activity due to possible exposure of biomass to high shear conditions. This study characterised bioprocess and membrane performance under varying conditions, identified foulant type and origin and mechanism of fouling, and developed fouling control strategies by using low cross flow velocity and pressure anaerobic membrane systems. The study employed a pilot scale anaerobic digester integrated with negative and neutral tubular membranes; pilot and bench scale control digesters supported with bench scale filtration unit parametric studies. The membranes were polyvinylidene difluoride based with an average pore size of 0.02 micron and were operated at a constant cross flow velocity of 1 ms-1 and constant trans-membrane pressure of 30 kPa. Four operating conditions consisting of different combinations of HRT and SRT were evaluated. By integrating membranes into the digesters it was possible to simultaneously enhance digestion and increase throughput of the digesters without affecting its performance. The anaerobic membrane digester showed 48-49% volatile solids destruction at 30 days SRT under conventional and higher loadings of 1.2±0.4 and 2.1±0.6 kg COD m-3day-1. This was a 100% increase in performance compared to a control digester subjected to higher loading. This result was supported by the associated specific methane generation. The control digesters operated at a relatively higher SRT showed comparable VS destruction and gas generation to the anaerobic membrane running at a similar SRT. However the extra gas generated didn’t compensate heat required to maintain larger volume of the digester. In case of anaerobic membrane digesters due to the high rate feeding, increase biogas production and co-thickening, the energy balance increased by 144 and 200% under conventional and higher loading conditions respectively. Characterization of membrane performance showed that the average sustainable flux was 23.2±0.4 and 14.8±0.4 LMH during HRT-SRTs of 15-30 and 7-15 days respectively. The critical fluxes were in the range of 30-40, 16-17 and 20-22 LM-2H-1 during HRT-SRTs of 15-30, 7-30 and 7-15 days respectively. The decline in membrane performance at a higher loading was associated with the formation of cake layers on the membrane surface that led to reversible fouling. The additional decline in performance at extended SRT was attributed to irreversible fouling. The colloidal fraction of the sludge showed an overall higher fouling propensity during the long term pilot studies and short term filtration tests. The suspended solids fraction of the sludge showed a positive impact at concentration below 15 g/L but resulted in a decrease of membrane performance at higher concentrations. Further studies of foulant origin through a series of microscopic, membrane cleaning and sludge characterization studies showed that the colloidal proteins, soluble carbohydrates and inorganic materials such as iron, calcium and sulfur and their interaction to have a significant impact on membrane fouling. To control anaerobic membrane fouling by the digested sludge, integration of membrane relaxation techniques in the filtration cycle were found effective. By incorporating a unique relaxation technique to tubular membranes, it was possible to increase the sustainable flux to 29.2±1.8 and 34.5±2.5 LM-2H-1 for neutral and negative membranes during 15-30 HRT-SRT process condition. Addition of cationic polymers and sequential mechanical-citric acid membrane cleaning, that targeted both reversible and irreversible fouling was also found effective.
33

Characterization of anaerobic membrane digesters for stabilization of waste activated sludge

Dagnew, Martha January 2010 (has links)
Anaerobic membrane bioreactors may provide a sustainable technological solution for digestion of waste activated sludge due to their capacity to achieve substantial volatile solids (VS) destruction and positive energy balances with reduced digester volumes. However, membrane integrated anaerobic systems may have limitations that are imposed by membrane fouling and a decrease in biomass activity due to possible exposure of biomass to high shear conditions. This study characterised bioprocess and membrane performance under varying conditions, identified foulant type and origin and mechanism of fouling, and developed fouling control strategies by using low cross flow velocity and pressure anaerobic membrane systems. The study employed a pilot scale anaerobic digester integrated with negative and neutral tubular membranes; pilot and bench scale control digesters supported with bench scale filtration unit parametric studies. The membranes were polyvinylidene difluoride based with an average pore size of 0.02 micron and were operated at a constant cross flow velocity of 1 ms-1 and constant trans-membrane pressure of 30 kPa. Four operating conditions consisting of different combinations of HRT and SRT were evaluated. By integrating membranes into the digesters it was possible to simultaneously enhance digestion and increase throughput of the digesters without affecting its performance. The anaerobic membrane digester showed 48-49% volatile solids destruction at 30 days SRT under conventional and higher loadings of 1.2±0.4 and 2.1±0.6 kg COD m-3day-1. This was a 100% increase in performance compared to a control digester subjected to higher loading. This result was supported by the associated specific methane generation. The control digesters operated at a relatively higher SRT showed comparable VS destruction and gas generation to the anaerobic membrane running at a similar SRT. However the extra gas generated didn’t compensate heat required to maintain larger volume of the digester. In case of anaerobic membrane digesters due to the high rate feeding, increase biogas production and co-thickening, the energy balance increased by 144 and 200% under conventional and higher loading conditions respectively. Characterization of membrane performance showed that the average sustainable flux was 23.2±0.4 and 14.8±0.4 LMH during HRT-SRTs of 15-30 and 7-15 days respectively. The critical fluxes were in the range of 30-40, 16-17 and 20-22 LM-2H-1 during HRT-SRTs of 15-30, 7-30 and 7-15 days respectively. The decline in membrane performance at a higher loading was associated with the formation of cake layers on the membrane surface that led to reversible fouling. The additional decline in performance at extended SRT was attributed to irreversible fouling. The colloidal fraction of the sludge showed an overall higher fouling propensity during the long term pilot studies and short term filtration tests. The suspended solids fraction of the sludge showed a positive impact at concentration below 15 g/L but resulted in a decrease of membrane performance at higher concentrations. Further studies of foulant origin through a series of microscopic, membrane cleaning and sludge characterization studies showed that the colloidal proteins, soluble carbohydrates and inorganic materials such as iron, calcium and sulfur and their interaction to have a significant impact on membrane fouling. To control anaerobic membrane fouling by the digested sludge, integration of membrane relaxation techniques in the filtration cycle were found effective. By incorporating a unique relaxation technique to tubular membranes, it was possible to increase the sustainable flux to 29.2±1.8 and 34.5±2.5 LM-2H-1 for neutral and negative membranes during 15-30 HRT-SRT process condition. Addition of cationic polymers and sequential mechanical-citric acid membrane cleaning, that targeted both reversible and irreversible fouling was also found effective.
34

Forward osmosis for concentration of anaerobic digester centrate

Holloway, Ryan W. January 2006 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2006. / "August, 2006." Includes bibliographical references (leaves xx-xx). Online version available on the World Wide Web.
35

Producing enhanced quality biosolids through anaerobic digester optimization /

Salsali, Hamidreza, January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2006. / Includes bibliographical references (p. 233-242). Also available in electronic format on the Internet.
36

Effect of centrifugal dewatering on the regrowth of fecal coliforms and Salmonella in anaerobically digested biosolids

Qi, Yinan. January 2008 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisors: Steven K. Dentel, Dept. of Civil & Environmental Engineering; and Diane S. Herson, Dept. of Biological Sciences. Includes bibliographical references.
37

Anaerobic treatment of benzoate- and phenol- containing wastewaters /

Chen, Tong. January 1996 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1996. / Includes bibliographical references (leaf 58-64).
38

The role of cellulases and glucohydrolases in the solubilisation of primary sewage sludge

Ngesi, Nosisa 09 May 2013 (has links)
Biological sulph ate reduction has been identi fied as a potentially valuable process for removing sulphate and heavy metals from indllstrial effluents. The role of sulphate reducing bacteria (SRB) in this process has attracted the attention of biotechnologists and recently of enzymologists due to its fundamental properties and possible role in AMD bioremediation. These obligatory anaerobic sulphate-reducing bacteria are commonly known to dissimilate sulphate for energy. Under anaerobic conditions SRB oxidize simple organic compounds such as lactic acid with the sulphate and thereby generate hydrogen sulphide (a stTong reducing agent) and bicarbonate ions. The hydrogen sulphide in turn reacts with contaminant metals contained in AMD and precipitates them out of solution as metal sulphides. Bicarbonate ions neutralize AMD by reaction with protons to form carbon dioxide and water. Organic matter in the municipal sewage sludge has been identified as a potential source of electron donors for su lphate reduction. However, this organic matter is in the polymeric form that cannot be util ised by SRB. The latter depend on the activities of other hydrolytic bacteria for the degradation of complex polymers. Hence the availability of these monomeric substrates is a major factor, which may constrain further process development and is considered a rate-limiting step. Thi s study is therefore undertaken to investigate the bacterial glucohydrolase enzymes involved in the digestion of the polysaccharides present in the sewage sludge with specific interest in cellulases and/or p-glucosidase enzymes. The goals of the research are to: isolate, identify, purify and quantify these enzymes; study their distribution with respect to time, pH, and temperature; maximize and quantify the hydrol ys is products; study whether sulphide and sulphate have an enhancing or an inhibitory effect on the activity of enzymes; optimize the enzyme activity against substrate and/or product inhibition and soluble heavy metal salts. / KMBT_363 / Adobe Acrobat 9.54 Paper Capture Plug-in
39

Potential Applications of Magnesium Hydroxide for Municipal Wastewater Treatment – Sludge Digestion Enhancement and Nutrient Removal

Wu, Qingzhong 21 May 2002 (has links)
No description available.
40

The role of biopolymers in thickening and dewatering of activated sludge

Kunjur, Jaidev January 1982 (has links)
The purpose of this study was to investigate the qualitative and quantitative characteristics of high molecular weight exocellular materials (biopolymer) produced in biological waste treatment systems and examine the relationship between biopolymer and sludge settling and dewatering properties. The biopolymer that interfered with sludge filtration was a high molecular weight (>10⁵) anionic biocolloid composed partially of proteins, carbohydrates and humic acids. The relationship between supernatant biopolymer and sludge settling and dewatering characteristics is system specific. Sludge dewatering rates and supernatant biopolymer concentration vary drastically as sludge pH was increased from pH 3.0 to pH 10.0. Supernatant biopolymer and sludge specific resistance increased as sludge pH increased. Particle size analysis of biological sludge showed an increase in particles with mean size less than 10 microns as sludge pH was increased. No significant relationship was observed between sludge settling and biopolymer concentration in the sludge supernatant. / Master of Science

Page generated in 0.0723 seconds