• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportamento de dois reatores em batelada seqüenciais aeróbios com diferentes idades do lodo e retorno total do lodo em excesso após desintegração com ultra-som / Behavior of two aerobic sequential batch reactors with different sludge ages and total return of excess sludge after disintegration by ultrasound

André Luís de Oliva Campos 18 October 2002 (has links)
O estudo teve por finalidade a redução do lodo gerado nos sistema aeróbios mediante recirculação do lodo em excesso, após passar por uma desintegração com ultra-som, ao tanque de aeração de cada reator. Foram utilizados dois reatores seqüenciais aeróbios (A e B) operando em sistema de batelada e com idades do lodo diferentes: 12 e 8 dias respectivamente, e com ciclos de doze horas. Os reatores foram operados em duas etapas. Na etapa inicial, chamada controle, os reatores foram operados por 130 dias sem reciclo do lodo, para se poder avaliar o comportamento e fazer futuras comparações com a etapa posterior, denominada teste. Na etapa controle foram analisados o comportamento da DQO, dos sólidos e dos nutrientes além de serem realizados testes com o ultra-som para a escolha do tempo de exposição e volume de amostra.. O reator A apresentou uma boa remoção de DQO (90,9%), entretanto não apresentou nitrificação completa, chegando apenas na transformação de nitrogênio orgânico a amoniacal. Já a remoção de fósforo foi da ordem de 60%. O reator B também apresentou uma boa remoção de DQO (87,7%) e houve formação de nitrato, embora não completa, e a remoção de fósforo se situou em 57%. Na etapa teste, que durou aproximadamente 90 dias, os reatores foram operados com retorno total do lodo após desintegração com ultra-som. Houve um aumento na DQO afluente devido ao retorno do lodo desintegrado, bem como um aumento nos teores de nitrogênio e fósforo. Houve também um aumento na concentração de sólidos dos reatores, sendo o reator A que apresentou um maior acréscimo. Ambos reatores apresentaram uma mesma eficiência na remoção de DQO (92,0% para o reator A, e 91% para o reator B) se comparado com a etapa controle. Com relação aos nutrientes os reatores apresentaram sensível melhora na nitrificação. O reator A apresentou uma quase completa redução no nitrogênio orgânico, embora não tenha chegado a nitrificação completa. O reator B apresentou uma remoção completa do nitrogênio orgânico. Com relação ao fósforo, a etapa teste apresentou um decréscimo na sua remoção (42% para o reator A e 44% para o reator B). As análises indicaram que a desintegração do lodo e seu retorno ao tanque de aeração não causaram problemas no funcionamento dos reatores, houve uma melhora na nitrificação e não houve uma sensível redução na remoção de fósforo. Comparando com o problema de transporte, tratamento e disposição final de lodo, o estudo de redução de lodos é uma grande alternativa e que merece mais estudos. / The study aims to reduce the sludge generation in aerobic systems by recirculation of the excess sludge after disintegration with a ultrasound set. Two aerobic sequential batch reactors (A and B) were utilized operating with two different sludge ages: 12 and 8 days respectively. The reactors were operated in two stages. In the first stage, called control, the reactors were operated for 130 days, without total sludge recirculation, to promote an assessment and compare with the next stage, called test. In the control stage the behavior of COD, solids and nutrients were analyzed, and tests with ultrasound were performed. The reactor A presented a good COD removal, but not a good nitrification, and a phosphorus removal of 60%. The reactor B presented a good COD removal and a good nitrification, but not complete, and a phosphorus removal of 57%. The test stage the reactors were operated for 90 days, with sludge recirculation after disintegration by ultrasound. There was an increase in influent COD, nitrogen and phosphorus because of sludge recirculation. There was an increase in MLVSS, but reactor A presented a greater increase. Both reactors presented good results in COD removal comparing with control stage. The reactors present a good improvement in nitrification, but not good phosphorus removal regarding to control stage. The analysis showed that sludge disintegration and recirculation to aeration tank not caused any problem in the behavior of the reactors. Comparing to transport, treatment and final disposal problems, the study of sludge reduction is a great alternative that deserves attention.
2

Comportamento de dois reatores em batelada seqüenciais aeróbios com diferentes idades do lodo e retorno total do lodo em excesso após desintegração com ultra-som / Behavior of two aerobic sequential batch reactors with different sludge ages and total return of excess sludge after disintegration by ultrasound

Campos, André Luís de Oliva 18 October 2002 (has links)
O estudo teve por finalidade a redução do lodo gerado nos sistema aeróbios mediante recirculação do lodo em excesso, após passar por uma desintegração com ultra-som, ao tanque de aeração de cada reator. Foram utilizados dois reatores seqüenciais aeróbios (A e B) operando em sistema de batelada e com idades do lodo diferentes: 12 e 8 dias respectivamente, e com ciclos de doze horas. Os reatores foram operados em duas etapas. Na etapa inicial, chamada controle, os reatores foram operados por 130 dias sem reciclo do lodo, para se poder avaliar o comportamento e fazer futuras comparações com a etapa posterior, denominada teste. Na etapa controle foram analisados o comportamento da DQO, dos sólidos e dos nutrientes além de serem realizados testes com o ultra-som para a escolha do tempo de exposição e volume de amostra.. O reator A apresentou uma boa remoção de DQO (90,9%), entretanto não apresentou nitrificação completa, chegando apenas na transformação de nitrogênio orgânico a amoniacal. Já a remoção de fósforo foi da ordem de 60%. O reator B também apresentou uma boa remoção de DQO (87,7%) e houve formação de nitrato, embora não completa, e a remoção de fósforo se situou em 57%. Na etapa teste, que durou aproximadamente 90 dias, os reatores foram operados com retorno total do lodo após desintegração com ultra-som. Houve um aumento na DQO afluente devido ao retorno do lodo desintegrado, bem como um aumento nos teores de nitrogênio e fósforo. Houve também um aumento na concentração de sólidos dos reatores, sendo o reator A que apresentou um maior acréscimo. Ambos reatores apresentaram uma mesma eficiência na remoção de DQO (92,0% para o reator A, e 91% para o reator B) se comparado com a etapa controle. Com relação aos nutrientes os reatores apresentaram sensível melhora na nitrificação. O reator A apresentou uma quase completa redução no nitrogênio orgânico, embora não tenha chegado a nitrificação completa. O reator B apresentou uma remoção completa do nitrogênio orgânico. Com relação ao fósforo, a etapa teste apresentou um decréscimo na sua remoção (42% para o reator A e 44% para o reator B). As análises indicaram que a desintegração do lodo e seu retorno ao tanque de aeração não causaram problemas no funcionamento dos reatores, houve uma melhora na nitrificação e não houve uma sensível redução na remoção de fósforo. Comparando com o problema de transporte, tratamento e disposição final de lodo, o estudo de redução de lodos é uma grande alternativa e que merece mais estudos. / The study aims to reduce the sludge generation in aerobic systems by recirculation of the excess sludge after disintegration with a ultrasound set. Two aerobic sequential batch reactors (A and B) were utilized operating with two different sludge ages: 12 and 8 days respectively. The reactors were operated in two stages. In the first stage, called control, the reactors were operated for 130 days, without total sludge recirculation, to promote an assessment and compare with the next stage, called test. In the control stage the behavior of COD, solids and nutrients were analyzed, and tests with ultrasound were performed. The reactor A presented a good COD removal, but not a good nitrification, and a phosphorus removal of 60%. The reactor B presented a good COD removal and a good nitrification, but not complete, and a phosphorus removal of 57%. The test stage the reactors were operated for 90 days, with sludge recirculation after disintegration by ultrasound. There was an increase in influent COD, nitrogen and phosphorus because of sludge recirculation. There was an increase in MLVSS, but reactor A presented a greater increase. Both reactors presented good results in COD removal comparing with control stage. The reactors present a good improvement in nitrification, but not good phosphorus removal regarding to control stage. The analysis showed that sludge disintegration and recirculation to aeration tank not caused any problem in the behavior of the reactors. Comparing to transport, treatment and final disposal problems, the study of sludge reduction is a great alternative that deserves attention.
3

Using ozonation and alternating redox potential to increase nitrogen and estrogen removal while decreasing waste activated sludge production

Dytczak, Magdalena Anna 10 September 2008 (has links)
The effectiveness of partial ozonation of return activated sludge for enhancing denitrification and waste sludge minimization were examined. A pair of nitrifying sequencing batch reactors was operated in either aerobic or alternating anoxic/aerobic conditions, with one control and one ozonated reactor in each set. The amount of solids decreased with the ozone dose. Biomass in the anoxic/aerobic reactor was easier to destroy than in the aerobic one, generating approximately twice as much soluble chemical oxygen demand (COD) by cell lysis. Increased COD favoured production of extracellular polymers in ozonated reactors, enhancing flocculation and improving settling. Floc stability was also strengthened in prolonged operation in alternating treatment, resulting in declined solids destruction. Dewaterability was better in alternating reactors than in aerobic ones indicating that incorporation of an anoxic zone for biological nutrient removal leads to improvement in sludge dewatering. The negative impact of ozonation on dewaterability was minimal in terms of the long-term operation. Ozone successively destroyed indicator estrogenic compounds, contributing to total estrogen removal from wastewater. Denitrification rate improved up to 60% due to additional carbon released by ozonation. Nitrification rates deteriorated much more in the aerobic than in the alternating reactor, possibly as a result of competition created by growth of heterotrophs receiving the additional COD. Overall, ozonation provided the expected benefits and had less negative impacts on processes in the alternating treatment, although after prolonged operation, benefits could become less significant. The alternating anoxic/aerobic reactor achieved twice the nitrification rates of its aerobic counterpart. Higher removal rates of estrogens were associated with higher nitrification rates, supporting the contention that the nitrifying biomass was responsible for their removal. The alternating treatment offered the better estrogen biodegradation. Microbial populations in both reactors were examined with fluorescent in situ hybridization. Dominance of rapid nitrifiers like Nitrosomonas and Nitrobacter (79.5%) in the alternating reactor, compared to a dominance of slower nitrifiers like Nitrosospira and Nitrospira (78.2%) in the aerobic reactor were found. The findings are important to design engineers, as reactors are typically designed based on nitrifiers’ growth rate determined in strictly aerobic conditions. / October 2008
4

Combination Of Alkaline Solubilization With Microwave Digestion As A Sludge Disintegration Method: Effect On Gas Production And Quantity And Dewaterability Of Anaerobically Digested Sludge

Dogan, Ilgin 01 July 2008 (has links) (PDF)
The significant increase in the sewage sludge production in treatment plants makes anaerobic digestion more important as a stabilization process. However hydrolysis is the rate-limiting step of anaerobic digestion because of the semirigid structure of the microbial cells. Pretreatment of waste activated sludge (WAS) leads to disruption of cell walls and release of extracellular and intracellular materials. Therefore biodegradability of sludge will be improved in terms of more biogas production and sludge minimization. Among the pretreatment methods, alkaline, thermal and thermochemical pretreatments are effectual ones. Considering the effect of thermal pretreatment, microwave technology in which the sample reaches to elevated temperatures very rapidly is a very new pretreatment method. However no previous research has been conducted to test the effectiveness of microwave (MW) irradiation combined with alkaline pretreatment. Since both of these techniques seem to be highly effective, their combination can act synergistically and even more efficient method can be obtained. Therefore the main objective of this study was to investigate the effect of combination of a chemical method (alkaline pretreatment) and a physical method (microwave irradiation) in improving anaerobic digestion of WAS. In the first part of the study, alkaline and MW pretreatment methods were examined separately, then their combinations were investigated for the first time in the literature in terms of COD solubilization, turbidity and CST. Highest SCOD was achieved with the combined method of MW+pH-12. In the second part, based on the results obtained in the first part, alkaline pretreatments of pH-10 and pH-12 / MW pretreatment alone and combined pretreatments of MW+pH-10 and MW+pH-12 pretreated WAS samples were anaerobically digested in small scale batch anaerobic reactors. In correlation with the highest protein and carbohydrate releases with MW+pH-12, highest total gas and methane productions were achieved with MW+pH-12 pretreatment reactor with 16.3% and 18.9% improvements over control reactor, respectively. Finally the performance of MW+pH-12 pretreatment was examined with 2L anaerobic semi-continuous reactors. 43.5% and 53.2% improvements were obtained in daily total gas and methane productions. TS, VS and TCOD reductions were improved by 24.9%, 35.4% and 30.3%, respectively. Pretreated digested sludge had 22% improved dewaterability than non-pretreated digested sludge. Higher SCOD and NH3-N concentrations were measured in the effluent of pretreated digested sludge / however, PO4-P concentration did not vary so much. Heavy metal concentrations of all digested sludges met Soil Pollution Control Regulation Standards. Finally a simple cost calculation was done for a MW+pH-12 pretreatment of WAS for a fictitious WWTP. Results showed that, WWTP can move into profit in 5.5 years.
5

Municipal Sludge Minimization: Evaluation Of Ultrasonic And Acidic Pretreatment Methods And Their Subsequent Effects On Anaerobic Digestion

Apul, Onur Guven 01 February 2009 (has links) (PDF)
Sludge management is one of the most difficult and expensive problems in wastewater treatment plant operation. Consequently, &amp / #8216 / sludge minimization&amp / #8217 / concept arose to solve the excess sludge production by sludge pretreatment. Sludge pretreatment converts the waste sludge into a more bioavailable substrate for anaerobic digestion and leads to an enhanced degradation. The enhanced degradation results in more organic reduction and more biogas production. Therefore, sludge pretreatment is a means of improving sludge management in a treatment plant. Among pretreatment methods, acidic pretreatment has been subject of limited successful studies reported in the literature. On the contrary / ultrasonic pretreatment was reported as an effective pretreatment method. Main objective of this study was to investigate the effects of these two pretreatment methods and their combination in order to achieve a synergistic effect and improve the success of both pretreatment methods. Experimental investigation of pretreatment methods consists of preliminary studies for deciding the most appropriate pretreatment method. Anaerobic batch tests were conducted for optimization of the parameters of selected method. Finally, operation of semi-continuous anaerobic reactors was to investigate the effect of pretreatment on anaerobic digestion in details. Preliminary studies indicated that, more effective pretreatment method in terms of solubilization of organics is ultrasonic pretreatment. Fifteen minutes of sonication enhanced 50 mg/L initial soluble COD concentration up to a value of 2500 mg/L. Biochemical methane potential tests indicated that the increased soluble substrate improved anaerobic biodegradability concurrently. Finally, semi-continuous anaerobic reactors were used to investigate the efficiency of pretreatment under different operating conditions. Results indicate that at SRT 15 days and OLR 0.5 kg/m3d ultrasonic pretreatment improved the daily biogas production of anaerobic digester by 49% and methane percentage by 16% and 24% more volatile solids were removed after pretreatment. Moreover, even after pushing reactors into worse operating conditions such as shorter solids retention time (7.5 days) and low strength influent, pretreatment worked efficiently and improved the anaerobic digestion. Finally cost calculations were performed. Considering the gatherings from enhancement of biogas amount, higher methane percentage and smaller amounts of volatile solid disposal from a treatment plant / installation and operation costs of ultrasound were calculated. The payback period of the installation was found to be 4.7 years.
6

Using ozonation and alternating redox potential to increase nitrogen and estrogen removal while decreasing waste activated sludge production

Dytczak, Magdalena Anna 10 September 2008 (has links)
The effectiveness of partial ozonation of return activated sludge for enhancing denitrification and waste sludge minimization were examined. A pair of nitrifying sequencing batch reactors was operated in either aerobic or alternating anoxic/aerobic conditions, with one control and one ozonated reactor in each set. The amount of solids decreased with the ozone dose. Biomass in the anoxic/aerobic reactor was easier to destroy than in the aerobic one, generating approximately twice as much soluble chemical oxygen demand (COD) by cell lysis. Increased COD favoured production of extracellular polymers in ozonated reactors, enhancing flocculation and improving settling. Floc stability was also strengthened in prolonged operation in alternating treatment, resulting in declined solids destruction. Dewaterability was better in alternating reactors than in aerobic ones indicating that incorporation of an anoxic zone for biological nutrient removal leads to improvement in sludge dewatering. The negative impact of ozonation on dewaterability was minimal in terms of the long-term operation. Ozone successively destroyed indicator estrogenic compounds, contributing to total estrogen removal from wastewater. Denitrification rate improved up to 60% due to additional carbon released by ozonation. Nitrification rates deteriorated much more in the aerobic than in the alternating reactor, possibly as a result of competition created by growth of heterotrophs receiving the additional COD. Overall, ozonation provided the expected benefits and had less negative impacts on processes in the alternating treatment, although after prolonged operation, benefits could become less significant. The alternating anoxic/aerobic reactor achieved twice the nitrification rates of its aerobic counterpart. Higher removal rates of estrogens were associated with higher nitrification rates, supporting the contention that the nitrifying biomass was responsible for their removal. The alternating treatment offered the better estrogen biodegradation. Microbial populations in both reactors were examined with fluorescent in situ hybridization. Dominance of rapid nitrifiers like Nitrosomonas and Nitrobacter (79.5%) in the alternating reactor, compared to a dominance of slower nitrifiers like Nitrosospira and Nitrospira (78.2%) in the aerobic reactor were found. The findings are important to design engineers, as reactors are typically designed based on nitrifiers’ growth rate determined in strictly aerobic conditions.
7

Using ozonation and alternating redox potential to increase nitrogen and estrogen removal while decreasing waste activated sludge production

Dytczak, Magdalena Anna 10 September 2008 (has links)
The effectiveness of partial ozonation of return activated sludge for enhancing denitrification and waste sludge minimization were examined. A pair of nitrifying sequencing batch reactors was operated in either aerobic or alternating anoxic/aerobic conditions, with one control and one ozonated reactor in each set. The amount of solids decreased with the ozone dose. Biomass in the anoxic/aerobic reactor was easier to destroy than in the aerobic one, generating approximately twice as much soluble chemical oxygen demand (COD) by cell lysis. Increased COD favoured production of extracellular polymers in ozonated reactors, enhancing flocculation and improving settling. Floc stability was also strengthened in prolonged operation in alternating treatment, resulting in declined solids destruction. Dewaterability was better in alternating reactors than in aerobic ones indicating that incorporation of an anoxic zone for biological nutrient removal leads to improvement in sludge dewatering. The negative impact of ozonation on dewaterability was minimal in terms of the long-term operation. Ozone successively destroyed indicator estrogenic compounds, contributing to total estrogen removal from wastewater. Denitrification rate improved up to 60% due to additional carbon released by ozonation. Nitrification rates deteriorated much more in the aerobic than in the alternating reactor, possibly as a result of competition created by growth of heterotrophs receiving the additional COD. Overall, ozonation provided the expected benefits and had less negative impacts on processes in the alternating treatment, although after prolonged operation, benefits could become less significant. The alternating anoxic/aerobic reactor achieved twice the nitrification rates of its aerobic counterpart. Higher removal rates of estrogens were associated with higher nitrification rates, supporting the contention that the nitrifying biomass was responsible for their removal. The alternating treatment offered the better estrogen biodegradation. Microbial populations in both reactors were examined with fluorescent in situ hybridization. Dominance of rapid nitrifiers like Nitrosomonas and Nitrobacter (79.5%) in the alternating reactor, compared to a dominance of slower nitrifiers like Nitrosospira and Nitrospira (78.2%) in the aerobic reactor were found. The findings are important to design engineers, as reactors are typically designed based on nitrifiers’ growth rate determined in strictly aerobic conditions.

Page generated in 0.1164 seconds