• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 15
  • 13
  • 12
  • 10
  • 10
  • 9
  • 8
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influencia da viscosidade sobre o escoamento gas-liquido horizontal intermitente / Influence of viscosity on the gas liquid intermittent flow in the horizontal pipe

Duarte, Milvio 26 February 2007 (has links)
Orientador: Eugenio Spano Rosa / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-11T13:16:35Z (GMT). No. of bitstreams: 1 Duarte_Milvio_M.pdf: 5637497 bytes, checksum: 73a45b46e4f664ad34e8514d8a182db5 (MD5) Previous issue date: 2007 / Resumo: Uma mistura de gás e líquido escoando em um tubo para uma larga faixa de vazões tem as fases gás e líquido distribuídas na tubulação de forma intermitente. Esse padrão é caracterizado por uma sucessão de longas bolhas seguidas de pistões de líquido que não ocorrem com tamanhos e periodicidade definidos devido às interações cinemáticas e dinâmicas que ocorrem entre as bolhas e os pistões de líquido. O comprimento, a velocidade e a freqüência das estruturas gás e líquido formadas são influenciados por diversos parâmetros do escoamento podendo-se citar: as vazões de gás e líquido, o diâmetro da linha, a densidade e a viscosidade dos fluidos entre outros. O presente trabalho tem por objetivo analisar o efeito da variação da viscosidade na caracterização das estruturas gás-líquido. O aparato experimental consiste de um misturador gás-líquido posicionado na entrada da seção de testes. Ela consiste de tubo de acrílico transparente de 23,4 m de comprimento, com 26 mm de diâmetro interno, totalizando 900 diâmetros livres. Dois pares de fluidos são testados: ar e água e ar com uma mistura de glicerina. Tomando-se como referência a viscosidade da água, 1 cP, a mistura de glicerina mais água apresenta uma viscosidade de 27 cP. As medidas instantâneas do escoamento tais como comprimentos, velocidades e freqüências são obtidos por meio de quatro estações de medidas. Elas são compostas por um par de sondas paralelas e estão localizadas a 127, 267, 494 e 777 diâmetros do misturador. Os testes são conduzidos para os mesmos pares de vazões de líquido e gás de forma que os efeitos da alteração da viscosidade do líquido possam ser evidenciados. Os resultados são apresentados em termos de valores médios, dos histogramas das populações e também por meio de correlações a medida que elas evoluem do misturador até a saída da seção de testes revelando de que maneira a mudança da viscosidade influi nestes parâmetros / Abstract: A gas-liquid mixture flowing through a pipe for a large flow range has its gas and liquid phases distributed intermittently along the pipe. This flow pattern is characterized by a succession of elongated bubbles and liquid slugs that do not occur with size and frequency defined due to the interactions between bubbles and liquid slugs. The length, speed and frequency of the gas-liquid structures are influenced by several flow parameters such as: gas and liquid flow rates, pipe diameter, fluids densities and viscosities, among others. The main goal of this work is to analyze the viscosity effect on characterization the gas-liquid structure. The experimental apparatus consists of a gas-liquid mixer located at the inlet of the test section. The test section is transparent acrylic pipe with 26 mm ID 23.4 m long. Two couples of fluids are tested: air-water and airglycerin solution. The water viscosity is of 1 cP, while the water-glycerin solution is of 27 cP viscosity. The lengths, speeds and frequencies of the gas-liquid structures are obtained by four measurement stations positioned along the test section. They are made of a couple of parallel wire probes are located at 127, 267, 494 and 777 diameters from the mixer. The tests are performed employing the same liquid and gas flow rates for both A@W and A@G allowing a straightforward analysis of the viscosity variation effects. The results are presented in terms of mean values, population histograms and also through mathematical correlations about the evolution along the test section, disclosing how the viscosity variation affects those parameters / Mestrado / Termica e Fluidos / Mestre em Engenharia Mecânica
2

Monitoring Gas Void Fraction In Two-Phase Flow With Acoustic Emission

Addali, Abdulmajid 04 1900 (has links)
The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters suffer from several limitations in some flow conditions such as Slug flow regime. This research presents experimental results correlating Acoustic Emission measurements with Gas Void Fraction (GVF) in a two-phase air / water flow. A unique experimental facility was modified to accommodate an investigation into the applicability of the Acoustic Emission (AE) technology in monitoring two-phase gas\liquid flow. The testing facility allowed for investigations over a range of superficial liquid velocities (0.3 to 2.0 ms-1) and superficial gas velocities (0.2 to 1.4 ms-1). The influence of several variables such as temperature, viscosity and surface roughness were also investigated. Measurements of AE for varying gas void fractions were compared to conductive probe measurements and results showed a direct correlation between the AE energy and the gas void fraction. It is concluded that the GVF can be determined by measurement of Acoustic Emission and this forms the major contribution of this thesis.
3

Experimental investigation and CFD simulation of slug flow in horizontal channels

Prasser, Horst-Michael, Sühnel, Tobias, Vallée, Christophe, Höhne, Thomas 31 March 2010 (has links) (PDF)
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4∙105 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. Furthermore, CFD pre-test calculations were done to show the possibility of slug flow generation in a real geometry and at relevant parameters for nuclear reactor safety. The simulation was performed on a flat model representing the hot-leg of the German Konvoi-reactor, with water and saturated steam at 50 bar and 263.9°C. The results of the CFD-calculation show wave generation in the horizontal part of the hot-leg which grow to slugs in the region of the bend.
4

Velocity field measurements around Taylor bubbles rising in stagnant and upward moving liquids

2013 September 1900 (has links)
Gas-liquid, two-phase flow is encountered in a wide variety of industrial equipment. A few examples are steam generators, condensers, oil and gas pipelines, and various components of nuclear reactors. Slug flow is one of the most common and complex flow patterns and it occurs over a broad range of gas and liquid flow rates. In vertical tubes, most of the gas is located in large, bullet-shaped bubbles (Taylor bubbles) which occupy most of the pipe cross section and move with a relatively constant velocity. The objectives of this work are to increase our understanding of slug flow in vertical tubes, to provide reliable data for validation of numerical models developed to predict the behaviour of slug flow, to interpret the behaviour of Taylor bubbles based on knowledge of the velocity field, and to determine the shape of the Taylor bubbles rising in stagnant and upward flowing liquid under various experimental conditions. To achieve these objectives, an experimental facility was designed and constructed to provide instantaneous two-dimensional (2-D) velocity field measurements using particle image velocimetry (PIV) around Taylor bubbles rising in a vertical 25 mm tube containing stagnant or upward moving liquids at Reynolds number based on the superficial liquid velocity (ReL = 250 to 17,800). The working fluids were filtered tap water and mixtures of glycerol and water (µ = 0.0010, 0.0050 and 0.043 Pa•s) and air. Mean axial and radial velocity profiles, axial turbulence intensity profiles, velocity vectors, and streamlines are presented for Taylor bubbles rising in stagnant and upward flowing liquids. The measurements were validated by a mass balance around the nose of the bubble. In stagnant liquids, the size of the primary recirculation zone in the near wake of the Taylor bubble depends on the inverse viscosity. For low viscosity liquid, the length of the primary recirculation zone is 1.23D (D is the tube diameter), for the intermediate viscosity it is 1.2D, and for the high viscosity it is 0.68D. Based on the velocity measurements, the minimum stable liquid slug length (the minimum distance needed to re-establish a fully-developed velocity distribution in the liquid in front of the trailing Taylor bubble) for stagnant cases was found to be in the range of 2~12D. In the flowing liquid, the flow structure of the wake depends on the relative motion between the two phases and the liquid viscosity. The wake is turbulent in all cases except at high viscosity where the wake is transitional. In general, the length of the primary recirculation zone increases with increasing liquid flow rate. For low viscosity cases, in a frame of reference moving at the bubble velocity, the length of the recirculation zone is 1.73D for ReL =9,200 and become essentially constant at 1.90D for ReL ≥ 13,600. For the intermediate viscosity, the length of the recirculation zone is 1.22D for ReL = 1,500. The length of the recirculation zone is increased to 1.34D for ReL = 3,900. For the high viscosity, the length of the recirculation region is elongated to 1.4D for ReL = 260. As the liquid flow rate increases the oscillations of the bottom surface increase and the number of small bubbles shed from the bubble bottom increases. The liquid slug minimum stable length for turbulent upward flowing liquid is around 12D. For laminar flow, the minimum stable length is 10D for ReL = 260 (high viscosity) and > 28D for ReL=1,500 (intermediate viscosity) and depends on the wake flow pattern and the liquid flow rate.
5

Dynamic analysis of non-steady flow in granular dense phase pneumatic conveying

Tan, Shengming January 2009 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Slug flow dense phase pneumatic conveying can be a most reliable, efficient method for handling a remarkably wide range of dry bulk solids. Models for pressure drop over slugs in the low-velocity slug-flow pneumatic conveying by many researchers only took the force balance into account with the pressure drop. However, the nature of the slug flow pneumatic conveying is discontinuous and seldom becomes steady during the conveying period which requires further investigation. The fundamental understanding to gas/slug interaction in this thesis is that, by being a dynamic system, the faster a slug moves at a speed, the larger the space is left behind the slug. The gas feeding into the conveying system has to fill the increased space first then permeates through the slug and provides a push force on the slug. With gas permeation rate defined by the permeability factor, the derivative of the upstream pressure based on the air mass conservation law has been developed. For a given conveying system, the pressure in the pneumatic conveying system can be solved for steady conditions or numerically simulated for unsteady conditions. Parametric analysis have been conducted for pressure drop factors and found that slug velocity is the major reason causing the pressure fluctuation in the pneumatic conveying system. To verify the pressure drop model, this model has been applied to single slug cases and compared with experimental results for five different bulk materials, showing good results. Three distinct zones, i.e. Fixed Bed Zone, Initial Slug Zone and Reliable Slug Zone, have been found to exist in the relationship between slip velocity and pressure gradient. Lastly this model has also been applied to a multiple slug system under uniform conditions. In all, the fundamental gas pressure/pressure drop model developed in this thesis approaches slug flow conveying from a different viewpoint from the traditional momentum and material stress models developed by previous researchers, and provides a way of assessing the non-steady flow behaviour in granular dense phase pneumatic conveying. This model not only attains a better understanding of slug flow behaviour but also increases the accuracy of predicting the parameters.
6

Dynamic analysis of non-steady flow in granular dense phase pneumatic conveying

Tan, Shengming January 2009 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Slug flow dense phase pneumatic conveying can be a most reliable, efficient method for handling a remarkably wide range of dry bulk solids. Models for pressure drop over slugs in the low-velocity slug-flow pneumatic conveying by many researchers only took the force balance into account with the pressure drop. However, the nature of the slug flow pneumatic conveying is discontinuous and seldom becomes steady during the conveying period which requires further investigation. The fundamental understanding to gas/slug interaction in this thesis is that, by being a dynamic system, the faster a slug moves at a speed, the larger the space is left behind the slug. The gas feeding into the conveying system has to fill the increased space first then permeates through the slug and provides a push force on the slug. With gas permeation rate defined by the permeability factor, the derivative of the upstream pressure based on the air mass conservation law has been developed. For a given conveying system, the pressure in the pneumatic conveying system can be solved for steady conditions or numerically simulated for unsteady conditions. Parametric analysis have been conducted for pressure drop factors and found that slug velocity is the major reason causing the pressure fluctuation in the pneumatic conveying system. To verify the pressure drop model, this model has been applied to single slug cases and compared with experimental results for five different bulk materials, showing good results. Three distinct zones, i.e. Fixed Bed Zone, Initial Slug Zone and Reliable Slug Zone, have been found to exist in the relationship between slip velocity and pressure gradient. Lastly this model has also been applied to a multiple slug system under uniform conditions. In all, the fundamental gas pressure/pressure drop model developed in this thesis approaches slug flow conveying from a different viewpoint from the traditional momentum and material stress models developed by previous researchers, and provides a way of assessing the non-steady flow behaviour in granular dense phase pneumatic conveying. This model not only attains a better understanding of slug flow behaviour but also increases the accuracy of predicting the parameters.
7

Monitoring gas void fraction in two-phase flow with acoustic emission

Addali, Abdulmajid January 2010 (has links)
The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters suffer from several limitations in some flow conditions such as Slug flow regime. This research presents experimental results correlating Acoustic Emission measurements with Gas Void Fraction (GVF) in a two-phase air / water flow. A unique experimental facility was modified to accommodate an investigation into the applicability of the Acoustic Emission (AE) technology in monitoring two-phase gas\liquid flow. The testing facility allowed for investigations over a range of superficial liquid velocities (0.3 to 2.0 ms-1) and superficial gas velocities (0.2 to 1.4 ms-1). The influence of several variables such as temperature, viscosity and surface roughness were also investigated. Measurements of AE for varying gas void fractions were compared to conductive probe measurements and results showed a direct correlation between the AE energy and the gas void fraction. It is concluded that the GVF can be determined by measurement of Acoustic Emission and this forms the major contribution of this thesis.
8

Experimental and modelling studies of transient slug flow

King, Matthew James Stuart January 1998 (has links)
No description available.
9

Experimental investigation and CFD simulation of slug flow in horizontal channels

Prasser, Horst-Michael, Sühnel, Tobias, Vallée, Christophe, Höhne, Thomas January 2007 (has links)
For the investigation of stratified two-phase flow, two horizontal channels with rectangular cross-section were built at Forschungszentrum Dresden-Rossendorf (FZD). The channels allow the investigation of air/water co-current flows, especially the slug behaviour, at atmospheric pressure and room temperature. The test-sections are made of acrylic glass, so that optical techniques, like high-speed video observation or particle image velocimetry (PIV), can be applied for measurements. The rectangular cross-section was chosen to provide better observation possibilities. Moreover, dynamic pressure measurements were performed and synchronised with the high-speed camera system. CFD post-test simulations of stratified flows were performed using the code ANSYS CFX. The Euler-Euler two fluid model with the free surface option was applied on grids of minimum 4∙105 control volumes. The turbulence was modelled separately for each phase using the k-ω based shear stress transport (SST) turbulence model. The results compare well in terms of slug formation, velocity, and breaking. The qualitative agreement between calculation and experiment is encouraging and shows that CFD can be a useful tool in studying horizontal two-phase flow. Furthermore, CFD pre-test calculations were done to show the possibility of slug flow generation in a real geometry and at relevant parameters for nuclear reactor safety. The simulation was performed on a flat model representing the hot-leg of the German Konvoi-reactor, with water and saturated steam at 50 bar and 263.9°C. The results of the CFD-calculation show wave generation in the horizontal part of the hot-leg which grow to slugs in the region of the bend.
10

Experimental study of corrosion rate and slug flow characteristics in horizontal, multiphase pipeline

Zhou, Xianling January 1993 (has links)
No description available.

Page generated in 0.05 seconds