1 |
Towards interoperability, self-management, and scalability for scalability for machine-to-machine systems / Vers l'interopérabilité, l'autogestion, et la scalabilité des systèmes Machine-to-MachineBen Alaya, Mahdi 06 July 2015 (has links)
La communication Machine-to-Machine (M2M) est l'un des principaux fondements de l'Internet des Objets (IoT). C'est un phénomène qui a évolué discrètement au cours du temps et vient d’émerger à la surface pour do! nner naissance à une explosion de nouveaux usages et services. Capteurs, actionneurs, tags, véhicules et objets intelligents ont tous la possibilité de communiquer. Le nombre de connexions M2M est en constante augmentation et il est prévu de voir des milliards d’objets connectés dans un futur proche. Les applications M2M offrent des avantages dans divers domaines à savoir les villes intelligentes, les voitures connectées, les usines du futures, l’agriculture de précision, l’environnement, la santé, etc. La croissance rapide de cet écosystème est entrain de conduire le M2M vers un avenir prometteur. Cependant, les opportunités d'expansion des marchés M2M ne sont pas évidentes. En effet, un ensemble de challenges doivent être surmontés afin de permettre un déploiement à grande échelle dans des domaines diverses et variés à savoir les défis d’interopérabilité, de complexité et de scalabilité. Actuellement, le marché du M2M souffre d'une fragmentation verticale importante touchant la majorité des domaines industriels. En effet, diverses solutions propriétaires ont été conçues pour répondre à des applications spécifiques engendrant ainsi un sérieux problème d''interopérabilité. Pour adresser ce challenge, nous avons conçu, développer et expérimenté la plateforme OM2M offrant une architecture opérationnelle, flexible et extensible pour l'interopérabilité M2M conforme à la norme SmartM2M. Pour supporter les environnements contraints, nous avons proposé une nouvelle convention de nommage basée sur une structure de ressources non-hiérarchique permettant d’optimiser la taille des messages échangés. Pour assurer l’interopérabilité sémantique entre les applications et les machines, nous avons proposé l'ontologie IoT-O. Cette dernière est composée de cinq modèles de base représentant les capteurs, les actionneurs, les observations, les actuations et les web ! services pour permettre de converger rapidement vers un vocabulaire commun pour l'IoT. Une plateforme M2M horizontale permet d'interconnecter des machines hétérogènes largement distribués et qui évoluent fréquemment en fonction des changements de l’environnement. Maintenir ces systèmes complexes en vie est coûteux en termes de temps et d'argent. Pour adresser ce challenge, nous avons conçu, développé et intégré le framework FRAMESELF afin d'ajouter des capacités d'autogestion aux systèmes M2M basées sur le paradigme de l'informatique autonome. En étendant le modèle d'architecture de référence MAPE-K, notre solution permet d'adapter dynamiquement le comportement de la plateforme OM2M par en fonctions des changements du contexte et des politiques haut niveaux. Nous avons défini un ensemble de règles sémantiques pour faire du raisonnement sur l'ontologie IoT-O en tant que modèle de connaissance. Notre objectif est de permettre la découverte automatique entre les machines et les applications à travers un appariement sémantique et une reconfiguration dynam! ique de l'architecture des ressources. L’interopérabilité et l’autogestion ouvrent la voie à un déploiement de masse des systèmes M2M. Par contre, ces derniers se basent sur l'infrastructure actuelle d'internet qui n'a jamais été conçu pour ce genre de d'utilisation ce qui pose de nouvelles exigences en termes de scalabilité. Pour adresser ce challenge, nous avons conçu, simulé et validé l'approche OSCL proposant une nouvelle topologie de réseau maillé M2M comme alternative à l'approche centralisée actuelle. OSCL s'appuie sur les techniques de routage centrées sur l'information favorisant les communications à sauts multiples et un cache distribué pour une meilleure dissémination des données. Nous avons développé le simulateur OSCLsim pour valider l'approche proposée.[...] / Machine-to-Machine (M2M) is one of the main features of Internet of Things (IoT). It is a phenomenon that has been proceeding quietly in the background, and it is coming into the surface, where explosion of usage scenarios in businesses will happen. Sensors, actuators, tags, vehicles, and intelligent things all have the ability to communicate. The number of M2M connections is continuously increasing, and it has been predicted to see billions of machines interconnected in a near future. M2M applications provide advantages in various domains from smart cities, factories of the future, connected cars, home automation, e-health to precision agriculture. This fast-growing ecosystem is leading M2M towards a promising future. However, M2M market expansion opportunities are not straightforward. A set of challenges should be overcome to enable M2M mass-scale deployment across various industries including interoperability, complexity, and scalability issues. Currently, the M2M market is suffering from a high vertical fragmentation affecting the majority of business sectors. In fact, various vendor-specific M2M solutions have been designed independently for specific applications, which led to serious interoperability issues. To address this challenge, we designed, implemented, and experimented with the OM2M platform offering a flexible and extensible operational architecture for M2M interoperability compliant with the SmartM2M standard. To support constrained environments, we proposed an efficient naming convention relying on a non-hierarchical resource structure to reduce the payload size. To reduce the semantic gap between applications and machines, we proposed the IoT-O ontology for an effective semantic interoperability. IoT-O consists of five main parts, which are sensor, actuator, observation, actuation and service models and aims to quickly converge to a common IoT vocabulary. An interoperable M2M service platform enables one to interconnect heterogeneous devices that are widely distributed and frequently evolving according to their environment changes. Keeping M2M systems alive is costly in terms of time and money. To address this challenge, we designed, implemented, and integrated the FRAMESELF framework to retrofit self-management capabilities in M2M systems based on the autonomic computing paradigm. Extending the MAPE-K reference architecture model, FRAMESELF enables one to dynamically adapt the OM2M system behavior according to high level policies how the environment changes. We defined a set of semantic rules for reasoning about the IoT-O ontology as a knowledge model. Our goal is to enable automatic discovery of machines and applications through dynamic reconfiguration of resource architectures. Interoperability and self-management pave the way to mass-scale deployment of M2M devices. However, current M2M systems rely on current internet infrastructure, which was never designed to address such requirements, thus raising new requirements in term of scalability. To address this challenge, we designed, simulated and validated the OSCL overlay approach, a new M2M meshed network topology as an alternative to the current centralized approach. OSCL relies on the Named Data Networking (NDN) technique and supports multi-hop communication and distributed caching 5 to optimize networking and enhance data dissemination. We developed the OSCLsim simulator to validate the proposed approach. Finally, a theoretical model based on random graphs is formulated to describe the evolution and robustness of the proposed system.
|
Page generated in 0.0314 seconds