• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular mechanisms of notch signaling governing vascular smooth muscle cell proliferation /

Havrda, Matthew C., January 2006 (has links) (PDF)
Thesis (Ph.D.) in Biochemistry and Molecular Biology--University of Maine, 2006. / Includes vita. Advisory Committee: Lucy Liaw, Scientist, Maine Medical Center Research Institute, Advisor; Carla Mouta-Bellum, Scientist, Maine Medical Center Research Institute; Jeong Yoon, Scientist, Maine Medical Center Research Institute; Dorothy E. Croall, Professor of Biochemistry; Thomas Gridley, Senior Scientist, The Jackson Laboratory. Includes bibliographical references (leaves 97-112 ).
2

Oxygen Regulation of Vascular Smooth Muscle Cell Proliferation and Survival

Basu Ray, Julie 03 March 2010 (has links)
Arterial smooth muscle cells (SMCs) from the systemic and pulmonary circulations experience a broad range of oxygen concentrations under physiological conditions. The hypoxic response, however, has been inconsistent, with both enhanced proliferation and growth arrest being reported. This variability precludes a definitive conclusion regarding the role of oxygen tension in arterial disease. In the first part of this study, we determined if hypoxia elicits different proliferative and apoptotic responses in human aortic SMCs (HASMCs) incubated under conditions which do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In HASMCs incubated at 3% O2, proliferation and progression through G1/S interphase are enhanced. Incubation at 1% O2 reduced proliferation, delayed G1/S transition, increased apoptosis and cellular ATP levels were reduced. In aorta and mesenteric artery from hypoxia exposed rats, both proliferation and apoptosis are increased after 48hrs. p53 and p21expression is differentially affected in HASMCs incubated at 1% and 3% O2. Hypoxia induces a state of enhanced cell turnover, conferring the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or abnormal vascular structure formation. A unifying hypothesis in which events at the G1/S transition and apoptosis activation are coordinated by effects on p53, p21, their downstream effector genes and regulatory factors is proposed. Differences in the contractile responses of systemic and pulmonary arterial smooth muscle cells to hypoxia are well studied. Differences in proliferation and survival are anticipated because of differences in embryonal cell origin, oxygen concentrations within their respective microenvironments and in cellular energetics but these responses have not been directly compared. In the second part of the study, human pulmonary arterial SMCs (HPASMCs) proliferated at oxygen concentrations which inhibited cell growth in HASMCs. HPASMCs survived and maintained their intracellular ATP levels at levels of hypoxia sufficient to deplete ATP and induce apoptosis in HASMCs. In vivo studies in rats show proliferation and apoptosis in main or branch PASMCs only after 7 days of hypoxia. VSMCs are able to proliferate under hypoxic conditions as long as cellular ATP levels are maintained. HPASMCs have an enhanced capacity to maintain cellular energy status compared to HASMCs and hence their viability is preserved and the proliferative response predominates at lower oxygen concentrations.
3

Oxygen Regulation of Vascular Smooth Muscle Cell Proliferation and Survival

Basu Ray, Julie 03 March 2010 (has links)
Arterial smooth muscle cells (SMCs) from the systemic and pulmonary circulations experience a broad range of oxygen concentrations under physiological conditions. The hypoxic response, however, has been inconsistent, with both enhanced proliferation and growth arrest being reported. This variability precludes a definitive conclusion regarding the role of oxygen tension in arterial disease. In the first part of this study, we determined if hypoxia elicits different proliferative and apoptotic responses in human aortic SMCs (HASMCs) incubated under conditions which do or do not result in cellular ATP depletion and whether these effects are relevant to vascular remodeling in vivo. Gene expression profiling was used to identify potential regulatory pathways. In HASMCs incubated at 3% O2, proliferation and progression through G1/S interphase are enhanced. Incubation at 1% O2 reduced proliferation, delayed G1/S transition, increased apoptosis and cellular ATP levels were reduced. In aorta and mesenteric artery from hypoxia exposed rats, both proliferation and apoptosis are increased after 48hrs. p53 and p21expression is differentially affected in HASMCs incubated at 1% and 3% O2. Hypoxia induces a state of enhanced cell turnover, conferring the ability to remodel the vasculature in response to changing tissue metabolic needs while avoiding the accumulation of mutations that may lead to malignant transformation or abnormal vascular structure formation. A unifying hypothesis in which events at the G1/S transition and apoptosis activation are coordinated by effects on p53, p21, their downstream effector genes and regulatory factors is proposed. Differences in the contractile responses of systemic and pulmonary arterial smooth muscle cells to hypoxia are well studied. Differences in proliferation and survival are anticipated because of differences in embryonal cell origin, oxygen concentrations within their respective microenvironments and in cellular energetics but these responses have not been directly compared. In the second part of the study, human pulmonary arterial SMCs (HPASMCs) proliferated at oxygen concentrations which inhibited cell growth in HASMCs. HPASMCs survived and maintained their intracellular ATP levels at levels of hypoxia sufficient to deplete ATP and induce apoptosis in HASMCs. In vivo studies in rats show proliferation and apoptosis in main or branch PASMCs only after 7 days of hypoxia. VSMCs are able to proliferate under hypoxic conditions as long as cellular ATP levels are maintained. HPASMCs have an enhanced capacity to maintain cellular energy status compared to HASMCs and hence their viability is preserved and the proliferative response predominates at lower oxygen concentrations.
4

Effects of flavonoids on proliferation of breast cancer cells and vascular smooth muscle cells /

Liu, Po-shiu, Jackie. January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
5

Novel genes associated with airway smooth muscle proliferation in asthma

Lau, Justine Y. January 2008 (has links)
Thesis (Ph. D.)--University of Sydney, 2009. / Title from title screen (viewed Aug. 11, 2009) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to the Discipline of Pharmacology, Faculty of Medicine. Degree awarded 2009; thesis submitted 2008. Includes bibliographical references. Also available in print form.
6

SIMVASTATIN INCORPORATED PERIVASCULAR POLYMERIC CONTROLLED DRUG DELIVERY SYSTEM FOR THE INHIBITION OF VASCULAR WALL INTIMAL HYPERPLASIA

Krishnan, Aadithya 13 September 2007 (has links)
No description available.

Page generated in 0.1458 seconds