• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Oxidation of Organic Species in Ice

Gao, Shawna Shanshan 24 August 2011 (has links)
Oxidation of organic species, in particular dicarboxylic and humic acids, was investigated in ice. Products were analyzed by Proton Transfer Reaction Mass Spectrometry, ion and gas chromatography, and a Total Organic Carbon analyzer. Photolysis of succinic acid with H2O2, an OH precursor, produced malonic acid and malic acid, illustrating that diacids are subject to photochemical degradation in ice. First-order decay rate constants were an order of magnitude higher at room temperature (~23 °C) than in ice (-20 °C). A smaller difference was observed for malonic acid, a more soluble diacid, suggesting that partial segregation of H2O2 and succinic acid during freezing played an important role in the kinetics. VOCs, likely to be aldehydes and ketones, were produced from ice containing humic acid through heterogeneous ozonolysis and photooxidation which was enhanced by NO3-, an OH precursor. VOCs also formed from ice made from deionized water, likely through oxidation of organic contaminants.
2

Oxidation of Organic Species in Ice

Gao, Shawna Shanshan 24 August 2011 (has links)
Oxidation of organic species, in particular dicarboxylic and humic acids, was investigated in ice. Products were analyzed by Proton Transfer Reaction Mass Spectrometry, ion and gas chromatography, and a Total Organic Carbon analyzer. Photolysis of succinic acid with H2O2, an OH precursor, produced malonic acid and malic acid, illustrating that diacids are subject to photochemical degradation in ice. First-order decay rate constants were an order of magnitude higher at room temperature (~23 °C) than in ice (-20 °C). A smaller difference was observed for malonic acid, a more soluble diacid, suggesting that partial segregation of H2O2 and succinic acid during freezing played an important role in the kinetics. VOCs, likely to be aldehydes and ketones, were produced from ice containing humic acid through heterogeneous ozonolysis and photooxidation which was enhanced by NO3-, an OH precursor. VOCs also formed from ice made from deionized water, likely through oxidation of organic contaminants.

Page generated in 0.0563 seconds