• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • 1
  • Tagged with
  • 17
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Soustava DC/DC měničů pro solární panely fotovoltaické elektrárny / System of DC/DC converters for solar cells of a fotovoltaic power plant

Benda, Dušan January 2018 (has links)
This master thesis describes the design of a DC/DC converter for one photovoltaic panel with a 250 W peak power. The master thesis is divided into parts dealing with detailed design of power electronics, analog circuit design, description of control MPPT algorithms and software for control circuit. The chapter with the mathematical modeling of the converter created in the Matlab Simulink was added beyond the assignment.
12

HIGH FREQUENCY TRANSFORMER LINKED CONVERTERS FOR PHOTOVOLTAIC APPLICATIONS

LI, QUAN, q.li@cqu.edu.au January 2006 (has links)
This thesis examines converter topologies suitable for Module Integrated Converters (MICs) in grid interactive photovoltaic (PV) systems, and makes a contribution to the development of the MIC topologies based on the two-inductor boost converter, which has received less research interest than other well known converters. The thesis provides a detailed analysis of the resonant two-inductor boost converter in the MIC implementations with intermediate constant DC links. Under variable frequency control, this converter is able to operate with a variable DC gain while maintaining the resonant condition. A similar study is also provided for the resonant two-inductor boost converter with the voltage clamp, which aims to increase the output voltage range while reducing the switch voltage stress. An operating point with minimized power loss can be also established under the fixed load condition. Both the hard-switched and the soft-switched current fed two-inductor boost converters are developed for the MIC implementations with unfolding stages. Nondissipative snubbers and a resonant transition gate drive circuit are respectively employed in the two converters to minimize the power loss. The simulation study of a frequency-changer-based two-inductor boost converter is also provided. This converter features a small non-polarised capacitor in a second phase output to provide the power balance in single phase inverter applications. Four magnetic integration solutions for the two-inductor boost converter have also been presented and they are promising in reducing the converter size and power loss.
13

Projeto de um inversor trifásico com snubber de undeland regenerativo e controle digital implementado no DSP TMS320F2812

Sperb, Jonathan Dômini 03 August 2007 (has links)
Made available in DSpace on 2016-12-12T17:38:35Z (GMT). No. of bitstreams: 1 Jonathan Domini Sperb.pdf: 5918080 bytes, checksum: ca2651157f2d17c4c98cd0a08aeee98c (MD5) Previous issue date: 2007-08-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This work deals with the design and implementation of the digital instantaneous averaged values control for output voltages of the three-phase inverter with Underland s snubber, using the Buck-Boost converter for regeneration of the snubber s energy. The qualitative and quantitative analysis of the inverter power structure, snubber and auxiliary converter, as well as the project for a set of presented specifications is presented. All needed block models for the design of the control are shown, as well as the project methodology of frequency response control. Results of simulation complement the work and prove the presented methodology. For experimental validation, it s developed a three-phase inverter with snubber and auxiliary converter, with output power of 4.5kVA, switching frequency of 50kHz, and with capacity to operate with full power for output voltage from 127V up to 220V. Experimental results of the power circuits and control performance complement the study. / Este estudo trata do projeto e implementação do controle digital por valores médios instantâneos das tensões de saída do inversor trifásico com Snubber de Undeland, utilizando conversor auxiliar Buck-Boost para regeneração da energia processada pelo snubber. São apresentados os estudos qualitativo e quantitativo das estruturas do inversor, snubber e conversor auxiliar, bem como o projeto final para um conjunto de especificações apresentadas. Para a realização do controle são mostrados os modelos matemáticos de todos os blocos necessários para o projeto do controlador, assim como é apresentada uma metodologia de projeto de controle baseado na resposta em freqüência. Resultados de simulação complementam o estudo e comprovam a metodologia apresentada. Para validação experimental, é desenvolvido um protótipo do inversor com snubber e conversor auxiliar, com potência de saída de 4,5kVA, freqüência de operação de 50kHz, e com capacidade de operar com potência nominal para a faixa de tensão de saída de 127V a 220V. Resultados experimentais dos circuitos de potência e controle complementam a validação deste estudo.
14

Electrical Integration of SiC Power Devices for High-Power-Density Applications

Chen, Zheng 24 October 2013 (has links)
The trend of electrification in transportation applications has led to the fast development of high-power-density power electronics converters. High-switching-frequency and high-temperature operations are the two key factors towards this target. Both requirements, however, are challenging the fundamental limit of silicon (Si) based devices. The emerging wide-bandgap, silicon carbide (SiC) power devices have become the promising solution to meet these requirements. With these advanced devices, the technology barrier has now moved to the compatible integration technology that can make the best of device capabilities in high-power-density converters. Many challenges are present, and some of the most important issues are explored in this dissertation. First of all, the high-temperature performances of the commercial SiC MOSFET are evaluated extensively up to 200 degree C. The static and switching characterizations show that the device has superior electrical performances under elevated temperatures. Meanwhile, the gate oxide stability of the device - a known issue to SiC MOSFETs in general - is also evaluated through both high-temperature gate biasing and gate switching tests. Device degradations are observed from these tests, and a design trade-off between the performance and reliability of the SiC MOSFET is concluded. To understand the interactions between devices and circuit parasitics, an experimental parametric study is performed to investigate the influences of stray inductances on the MOSFETs switching waveforms. A small-signal model is then developed to explain the parasitic ringing in the frequency domain. From this angle, the ringing mechanism can be understood more easily and deeply. With the use of this model, the effects of DC decoupling capacitors in suppressing the ringing can be further explained in a more straightforward way than the traditional time-domain analysis. A rule of thumb regarding the capacitance selection is also derived. A Power Electronics Building Block (PEBB) module is then developed with discrete SiC MOSFETs. Integrating the power stage together with the peripheral functions such as gate drive and protection, the PEBB concept allows the converter to be built quickly and reliably by simply connecting several PEBB modules. The high-speed gate drive and power stage layout designs are presented to enable fast and safe switching of the SiC MOSFET. Based on the PEBB platform, the state-of-the-art Si and SiC power MOSFETs are also compared in the device characteristics, temperature influences, and loss distributions in a high-frequency converter, so that special design considerations can be concluded for the SiC MOSFET. Towards high-temperature, high-frequency and high-power operations, integrated wire-bond phase-leg modules are also developed with SiC MOSFET bare dice. High-temperature packaging materials are carefully selected based on an extensive literature survey. The design considerations of improved substrate layout, laminated bus bars, and embedded decoupling capacitors are all discussed in detail, and are verified through a modeling and simulation approach in the design stage. The 200 degree C, 100 kHz continuous operation is demonstrated on the fabricated module. Through the comparison with a commercial SiC phase-leg module designed in the traditional way, it is also shown that the design considerations proposed in this work allow the SiC devices in the wire-bond structure to be switched twice as fast with only one-third of the parasitic ringing. To further push the performance of SiC power modules, a novel hybrid packaging technology is developed which combines the small parasitics and footprint of a planar module with the easy fabrication of a wire-bond module. The original concept is demonstrated on a high-temperature rectifier module with SiC JFET. A modified structure is then proposed to further improve design flexibility and simplify module fabrication. The SiC MOSFET phase-leg module built in this structure successfully reaches the switching speed limit of the device almost without any parasitic ringing. Finally, a new switching loop snubber circuit is proposed to damp the parasitic ringing through magnetic coupling without affecting either conduction or switching losses of the device. The concept is analyzed theoretically and verified experimentally. The initial integration of such a circuit into the power module is presented, and possible improvements are proposed. / Ph. D.
15

Design of Resonant Converters using Silicon Carbide Power

Moozhikkal, Rahul January 2016 (has links)
The design of series-loaded resonant converters using the state of the art SiC power transistorsis investigated in the thesis. SiC devices are chosen as they offer lower switching losses comparedto conventional Si based devices A very detailed study about the working and differentmodes of operation of the resonant converter is carried out. The thesis further explains how thehigh speed switching capabilities of the SiC devices remain untapped owing to the presence ofstray inductances in the switch-snubber layout. A comparison of all the commercially availableSiC devices are carried out to find the most suitable switch for the resonant converter. Thethesis also carries out a very detailed step by step design of the circuit and the PCB layout forthe resonant converter. Two different layouts are proposed and then compared for their strayinductance and power losses. Finally, based on the experiments the thesis validates the suitabilityof using discrete SiC power transistors in place of power modules. / Utformningen av serie-belastade resonansomvandlare med hjälp av toppmoderna SiC högeffekttransistorernaundersöks i denna avhandlingen. SiC-enheter väljs eftersom de erbjuderlägre switch-förluster jämfört med konventionella Si-baserade enheter.En mycket detaljeradstudie om funktionen och de olika operationella tillstånden hos resonansomvandlare utförs.Avhandlingen förklarar vidare hur förmågan till högfrekvent switchning hos SiC-enheterförblir ofullständigt utnyttjad på grund av förekomsten av ströinduktanser i switch-snubberlayouten.En jämförelse av alla kommersiellt tillgängliga SiC-enheter genomförs för att hittaden mest lämpliga switchen för resonansomvandlaren. Avhandlingen utförs också en mycketdetaljerad steg-för-steg-utformning av resonansomvandlaren kretsschema och kretskortlayout.Två olika layouter föreslås och jämförs därefter utifrån deras ströinduktanser ocheffektförluster. Slutligen, baserat på experimentella resultat bekräftar avhandlingen.Lämpligheten att använda diskreta SiC-effekttransistorer istället för effektmoduler medintegrerade drivarsteg för styrelektroderna.
16

Mikroprocesorový modul řízení SS motoru se zpětnou vazbou / DC motor controler with feedback

Dundáček, Martin January 2008 (has links)
This thesis deals with DC motor control. Main goal was design and realization of DC motor controler module with feedback. The first part dwells on methods for DC motor control and HW design of control module. The second part describes development of software for the module, testing and sums up results.
17

Development of an Efficient Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles

Zhuge, Kun January 2013 (has links)
The popularity of the internal combustion engine (ICE) vehicles has contributed to global warming problem and degradation of air quality around the world. Furthermore, the vehicles??? massive demand on gas has played a role in the depletion of fossil fuel reserves and the considerable rise in the gas price over the past twenty years. Those existing challenges force the auto-industry to move towards the technology development of vehicle electrification. An electrified vehicle is driven by one or more electric motors. And the electricity comes from the onboard energy storage system (ESS). Currently, no single type of green energy source could meet all the requirements to drive a vehicle. A hybrid energy storage system (HESS), as a combination of battery and ultra-capacitor units, is expected to improve the overall performance of vehicles??? ESS. This thesis focuses on the design of HESS and the development of a HESS prototype for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Battery unit (BU), ultra-capacitor unit (UC) and a DC/DC converter interfacing BU and UC are the three main components of HESS. The research work first reviews literatures regarding characteristics of BU, UC and power electronic converters. HESS design is then conducted based on the considerations of power capability, energy efficiency, size and cost optimization. Besides theoretical analysis, a HESS prototype is developed to prove the principles of operation as well. The results from experiment are compared with those from simulation.

Page generated in 0.0314 seconds