Spelling suggestions: "subject:"slug"" "subject:"sug""
1 |
Snug HarborBates, Sean Jeffrey 01 January 2018 (has links) (PDF)
Snug Harbor is a collection of poetry dealing with a collective working history and the personal working history of growing up in various restaurants around Upstate New York.
|
2 |
Rotating Supporting Hyperplanes and Snug Circumscribing SimplexesSalmani Jajaei, Ghasemali 01 January 2018 (has links)
This dissertation has two topics. The rst one is about rotating a supporting
hyperplane on the convex hull of a nite point set to arrive at one of its facets.
We present three procedures for these rotations in multiple dimensions. The rst
two procedures rotate a supporting hyperplane for the polytope starting at a lower
dimensional face until the support set is a facet. These two procedures keep current
points in the support set and accumulate new points after the rotations. The rst
procedure uses only algebraic operations. The second procedure uses LP. In the third
procedure we rotate a hyperplane on a facet of the polytope to a dierent adjacent
facet. Similarly to the rst procedure, this procedure uses only algebraic operations.
Some applications to these procedures include data envelopment analysis (DEA) and
integer programming.
The second topic is in the eld of containment problems for polyhedral sets.
We present three procedures to nd a circumscribing simplex that contains a point
set in any dimension. The rst two procedures are based on the supporting hyperplane
rotation ideas from the rst topic. The third circumscribing simplex procedure
uses polar cones and other geometrical properties to nd facets of a circumscribing
simplex. One application of the second topic discussed in this dissertation is in hyperspectral unmixing.
|
3 |
Investigation of the Turn-of-Nut Installation Procedure for XTB-HX FastenersNiekamp, Philip M. 30 June 2015 (has links)
No description available.
|
4 |
An Investigation of Anchor Nut Loosening and Review of Tightening Procedures for Anchor Rods in Highway Ancillary StructuresSingh, Japsimran 14 April 2020 (has links)
Ancillary structures are highway support structures such as traffic signals, sign structures, luminaires, and high-mast light towers which are typically fastened to a concrete foundation using embedded anchor rods and anchor nuts. The inventory of ancillary structures across the United States is huge, and these structures vary dramatically in type, age, size, and material. There have been reported cases of anchor nut loosening on ancillary structures in the past few decades, but the cause of loosening is still unknown. Ancillary structures are susceptible to vibrations due to different wind loadings like natural gusts, vortex shedding, galloping, and truck-induced gusts. Wind-induced vibrations are believed to be one of the potential causes of anchor nut loosening. Previous research also suggests that vibrations can lead to loosening of nuts in structural and mechanical connections. There is concern regarding the current tightening procedures specified in the various federal and state specifications. Improper tightening can potentially lead to anchor nut loosening under the effect of wind-induced vibrations. In ancillary structures, the anchor rods and nuts are first snug-tightened using a wrench before fully pretensioning them as per the current specifications. The snug-tight condition is vaguely defined at present and needs revisions to avoid any under-tightening or over-tightening. Galvanization and overtapping of the anchor nuts also pose a potential concern. Anchor nuts are tapped oversize after galvanization to ensure the nuts fit well on the galvanized rod. American Society for Testing and Materials (ASTM) standards provide specific allowable tolerances on the thread parameters of the anchor rod and nut after galvanization and overtapping. Any deviation from the allowable tolerances can lead to gaps between the mating threads, which can contribute to the loosening of nuts under vibrations.
This study focuses on investigating the following potential causes of loosening: improper tightening, wind-induced vibrations, snug-tight condition, and thread fabrication tolerance. Current tightening procedures for double-nut and single-nut connections on ancillary structures were verified using a tightening study as part of the investigation. New revisions to the specified nut rotation values for double-nut connections and a draft for proposed new specifications on single-nut connections has been provided as a result of discrepancies and inconsistencies in the current specifications. Vibration testing of a full-scale traffic signal was conducted on the basis of results from a four-month field monitoring program in order to investigate the effects of wind-induced vibrations on anchor nut loosening. It was concluded from testing that improper tightening (pretension < 5ksi) can lead to loosening of anchor nuts under wind-induced vibrations. A small-scale testing was also conducted to verify the results from the large-scale vibration testing. Snug-tight pretension in grade 55, 1-inch and 2-inch anchor rods was found to be highly variable due to different wrench lengths and personnel strength. Thread parameters of galvanized anchor rods and nuts procured from 3 different regional suppliers were found to be within specified tolerances. Various recommendations were then made as a result of the above tightening, vibration, and thread tolerance studies in an effort to reduce the cases related to anchor nut loosening in the future. / Doctor of Philosophy / Ancillary structures like traffic signals, sign structures, and light poles are typically connected to the ground using anchor rods and anchor nuts. There is a very large number of ancillary structures throughout the United States and vary in type, age, size, and material. There have been reported cases of anchor nut loosening on ancillary structures in the past few decades, but the cause of loosening is still unknown. Different types of wind loadings like natural gusts, vortex shedding, galloping, and truck-induced gusts vibrate the ancillary structures. These vibrations due to the wind are believed to be one of the potential causes of anchor nut loosening. Vibrations in the past have been shown to cause loosening of nuts in other structural and mechanical connections. There is also concern that the anchor rods and anchor nuts are not tightened properly as per the specifications, which can lead to loosening of nuts when the ancillary structures vibrate due to wind loadings. In ancillary structures, the anchor nuts are first made tight using a wrench with the full effort of a worker, also known as the snug-tight condition. The snug-tight condition is not properly defined at present and needs to be changed to prevent any under-tightening or over-tightening of the anchor nuts. Also, the anchor rods and nuts are generally coated with a hot zinc layer to prevent their corrosion when exposed to environmental effects like ice, snow, humidity, and rain. This process is called galvanization. The American Society for Testing and Materials (ASTM) provides some guidelines on the amount of coating allowed on the threads of the anchor rods and nuts. Any deviation from the allowable tolerances can lead to gaps between the threads of the anchor rod and nut, which can contribute to the loosening of nuts during vibrations of ancillary structures due to wind.
This study focuses on investigating the following potential causes of loosening: improper tightening, vibrations of ancillary structures due to wind, snug-tight condition, and allowable tolerances for the amount of galvanization. Current tightening procedures for anchor rods and nut on ancillary structures were verified using a tightening study as part of the investigation. New revisions to the current tightening procedures have been provided as a result of discrepancies and inconsistencies observed in the current specifications. A traffic signal and a light pole were instrumented with sensors for four months to measure wind-related forces acting on these structures. Further, a full-scale traffic signal was vibrated in the laboratory using an electric motor to simulate the vibrations due to the measured wind forces. It was determined from the testing that if the anchor nuts were not properly tightened, they could become loose during vibrations due to wind. A small-scale testing was also conducted to check the results from the full-scale vibration testing. The snug-tight force in the anchor rods was also found to be dependent on the length of the wrench and the worker tightening it. The amount of galvanization on the rods and nuts procured from 3 different suppliers were found to be within allowable tolerances. Various recommendations were then made as a result of the conclusions in an effort to reduce the cases related to anchor nut loosening in the future.
|
5 |
Digital Radio Implementation for NASA S-Band Space Network TransceiverBerhanu, Samuel, Neupane, Kamal 10 1900 (has links)
The system diagrams for the digital radio compatible with NASA's S-Band Space Network operating from 2025.8 - 2117.9 MHz (forward link) to 2200 - 2300 MHz (return link) are presented. The digital radio implementation includes binary phase shift keying (BPSK), quadrature phase shift keying (QPSK) and staggered quadrature phase shift keying (SQPSK). We have derived the system requirements for these modulation schemes from the Space Network User Guide (SNUG) and thereafter, derived system diagrams for the communication links. The designed system diagrams for the transceiver were implemented using Simulink models and USRP2 platform.
|
Page generated in 0.0405 seconds