• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development

Davila, Stephen Juan 08 1900 (has links)
The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a variety of alternative application in the sciences.
2

Miniature Mass Spectrometry: Theory, Development and Applications

Fox, James D. 12 1900 (has links)
As mass analyzer technology has continued to improve over the last fifty years, the prospect of field-portable mass spectrometers has garnered interest from many research groups and organizations. Designing a field portable instrument entails more than the scaling down of current commercial systems. Additional considerations such as power consumption, vacuum requirements and ruggedization also play key roles. In this research, two avenues were pursued in the initial development of a portable system. First, micrometer-scale mass analyzers and other electrostatic components were fabricated using silicon on insulator-deep reactive ion etching, and tested. Second, the dimensions of an ion trap were scaled to the millimeter level and fabricated from common metals and commercially available vacuum plastics. This instrument was tested for use in ion isolation and collision induced dissociation for secondary mass spectrometry and confirmatory analyses of unknowns. In addition to portable instrumentation, miniature mass spectrometers show potential for usage in process and reaction monitoring. To this end, a commercial residual gas analyzer was used to monitor plasma deposition and cleaning inside of a chamber designed for laser ablation and soft landing-ion mobility to generate metal-main group clusters. This chamber was also equipped for multiple types of spectral analysis in order to identify and characterize the clusters. Finally, a portion of this research was dedicated to method development in sample collection and analysis for forensic study. A new method for the analysis of illicit chemistries collected via electrostatic lifting is presented. This method incorporates surface-enhanced Raman microscopy as a prescreening tool for nanoextraction and nanospray ionization mass spectrometry.
3

Toxicological and Biochemical Changes Induced by Sub-Acute Exposure of Biological Organisms to Silver Nanoparticles Using Soft-Landing Ion Mobility Instrument

Nayek, Subhayu 12 1900 (has links)
In this study, we have developed a novel way of generating and exposing biological organisms (both prokaryotic and eukaryotic) to silver nanoparticles (AgNPs) and studying the biochemical changes induced by these particles. We analyzed the various organs of Wistar rats for localization and quantification of these particles using mass spectrometric and molecular biological techniques. Highest levels of AgNP was found in the lung tissue in addition to being present in the liver and kidneys. Analysis of the of the blood plasma from AgNP exposed rats revealed elevated levels of glutathione-disulfide, which is indicative of reactive oxygen species (ROS) generation, which was further validated using ROS specific immunofluorescence staining of liver tissue. Quantification of blood lactate levels of the AgNP exposed rats showed increased lactate levels, which is indicative of anaerobic respiration and may result from AgNP-induced oxidative stress. Further analysis of bone marrow cells from AgNP exposed rats showed a higher number of micronuclei formation in developing erythrocytes and bone marrow cytotoxicity. Finally, analysis of the genes involved in the renin-angiotensin system (RAS) and inflammatory response revealed upregulation in transcript levels of many of these important genes in the liver tissue. Taken together, our study provides an initial road map for the identification of different signaling pathways that are altered by the AgNP exposure and contributes to a comprehensive understanding of the mechanism involved in silver nanoparticle-induced toxicity.

Page generated in 0.142 seconds