• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 21
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 117
  • 114
  • 48
  • 18
  • 14
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Soil Properties and Behavior of Earthflows in the Mt. Hood National Forest, Oregon

Smith, Douglas Andrew 19 April 1994 (has links)
Soils from two active earthflows, two earthflow deposits, and three non-earthflow landforms are examined to determine if a connection exists between near-surface soil properties and rates of earthflow movement. The study area is located in the Clackamas Ranger District of the Mt. Hood National Forest in the northern Oregon Cascades. Its geology consists of clay-bearing volcaniclastic formations overlain by unaltered flows of andesite and basalt, a combination that contributed to large-scale landsliding during the late Pleistocene. Deposits from these landslides now cover much of the valley floor, and it is from these deposits that earthflows tend to mobilize. The main hypothesis is that near-surface soil properties reflect earthflow movement and may be used to distinguish between active and inactive earthflows. The results support this hypothesis and indicate that soils in each of the three categories show clear differences in terms of their physical properties. The mean field moisture content of active earthflows is 56 percent, while that of earthflow deposits is 46 percent and that of non-earthflow landforms is 36 percent. All samples from active earthflows exhibit plasticity, whereas 90 percent of samples from earthflow deposits and only 25 percent of samples from nonearthflow landforms exhibit plasticity. The mean liquid limit of active earthflows is 78 percent, compared to 60 percent for earthflow deposits and 46 percent for non-earthflow landforms. The mean plasticity index of active earthflows is 41 percent, compared to only 13 percent for earthflow deposits and non-earthflow landforms. These differences are largely attributed to clay content and clay type. The mean clay content of active earthflows is 46 percent, compared to 24 percent for earthflow deposits and only 5 percent for nonearthflow landforms. In contrast, the mean sand content of active earthflows is 20 percent, while earthflow deposits contain 40 percent and non-earthflow landforms 50 percent. This difference in particle sizes is reflected in friction angle. Active earthflows have a mean friction angle of 15 degrees, compared to 24 degrees for earthflow deposits and 31 degrees for non-earthflow landforms. These results indicate that soil properties can be used to draw distinctions between active and inactive earthflows. However, soil properties are much less effective at distinguishing between active earthflows that move at different rates. For example, Junction earthflow, which moves only a few centimeters per year, is composed of soils that indicate it to be less stable than the Collowash earthflow, which moves approximately 2 meters per year. The reason for this discrepancy is that, in addition to soil properties, the rate of earthflow movement depends on the complimentary effects of hydrology, slope angle, toe erosion, and boundary roughness. Many ancient landslide deposits in the Mt. Hood National Forest are poised for action and may mobilize upon the slightest provocation. Since this is not seen as a "desired future condition" there is a need to differentiate between those deposits with a potential for reactivation and those likely to remain dormant. Examining the physical properties of soils appears to be one way to do this, and the information collected is valuable to land managers and earth scientists alike.
112

Factors influencing natural attenuation of dinitrotoluenes in surface soils: Badger Army Ammunition Plant a case study

Tulsiani, Urvi Kotak 18 July 2005 (has links)
Factors influencing natural attenuation of dinitrotoluenes (DNT) in surface soils and the application of monitored natural attenuation (MNA) as a remediation strategy were examined using contaminated soils from Badger Army Ammunition Plant (BAAP). Based on the previous research involving contaminated media obtained from locations at BAAP, and the fact that groundwater at the site is not contaminated, it seemed likely that aerobic biodegradation of DNT is active without intervention, and that natural attenuation may be an effective strategy for managing the contamination that exists at BAAP. Microcosms showed that microbes indigenous to soils are capable of 2,4-DNT mineralization and that DNT will adsorb reversibly and become bioavailable. In column studies 2,4-DNT biodegradation was observed and the nitrite evolved during DNT degradation was presumably removed due to oxidation by nitrite oxidizers. The use of simulated rainwater as influent with no nutrient amendments suggests that nutrients do not limit the biodegradation of low concentrations of DNT in the soil tested. In the chemostat study carried out to study effect lowering of temperature (22㬠15㬠10㬠7.5㠡nd 4㩠on biodegradation of DNT at hydraulic retention time of 2.5 days, no sustained change in the DNT substrate removal was observed with change in temperature, but it had a large effect on the nitrite oxidizers. This suggests that the seasonal fluctuations in temperature will have minimal effect on the DNT removal via biodegradation at temperatures above 0㮠Nitrite oxidizers were active at 22㬠their activity decreased at 15㠡nd ceased at temperatures 10㠡nd lower. Nitrite is generally taken as a line of evidence for biodegradation of DNT. The results from the soil column study and chemostat showed that nitrite measurement should not be always taken as a conclusive indicator of DNT degradation. It should be taken into consideration that absence of nitrite does not necessarily mean absence of DNT biodegradation (probably at high temperatures).
113

Characteristics and sorption properties of charcoal in soil with a specific study of the charcoal in an arid region soil of Western Australia

McMahon, Claire Louise January 2006 (has links)
[Truncated abstract] Fire creates charcoal from the partial burning of biomass which results in a biologically inert form of carbonaceous (non-living) organic matter that, once integrated into soil and sediments, can persist for long periods of time. Charcoal has a large surface area with a high sorptive capacity for organic and inorganic substances. As a repository for metal and non-metal elements charcoal has been given little, if any, attention in the fields of geochemistry, agriculture and environmental monitoring . . . Despite the differences in charcoal surface area, soil charcoal achieved nearly 100% sorption of 0.5 and 5 μg/g Au from 0.03 M NaCl and 0.01M Ca(NO3)2 solution, almost independent of solution pH. At low pH, charcoal sorbed between 10 and 60% of Cu with initial additions of 2 and 20 μg Cu/g. Similarly, between 15 and 40% of Zn was sorbed by charcoal with initial additions of 5 and 40 μg Zn/g. The role of surface area in sorption of elements by charcoal is clearly only one factor that is important. Charcoal aromatic and aliphatic chemical functional groups, which can be distinguished from other forms of organic matter through spectroscopic determination, are also important in charcoal’s capacity to sorb elements. Accumulation of Be, B, Na, Mg, Al, Si, K, Ca, Ti, Mn, Co, Ni, Cu, Se, Mo, Ba, Au and Pb (out of a range of 29 elements) in soil charcoal, above the concentrations in the matrix soil and plant reference charcoal, was confirmed by ICP-MS analysis. Concentrations of V, Mn, Co, Ni, Cu, Mo, Ba, Au, Pb and Bi were higher in soil charcoal than in values quoted for gossans and pisolites in the field area region (Smith and Perdrix, 1983). Higher values of Au in soil charcoal were associated with considerable amounts of included clay minerals and higher values of other elements including Mo, Mn and Fe.
114

Corretivos de acidez e fontes de fósforo na disponibilidade de P no solo, nutrição e produção do amendoim e do capim marandu /

Léles, Érica Pontes, 1982- January 2012 (has links)
Orientador: Dirceu Maximino Fernandes / Banca: Leonardo Theodoro Büll / Banca: Roberto Lyra Villas Bôas / Banca: Marina Moura Morales / Banca: Rosemary Marques de A. Bertani / Resumo: A reduzida eficiência de aproveitamento dos fertilizantes fosfatados é influenciada pela solubilidade de suas fontes. Uma das alternativas para melhorar a disponibilidade de P nos solos e aumentar o aproveitamento dos fertilizantes é a aplicação de silicatos. Para verificar a influência dos corretivos de acidez e das fontes de fósforo nos atributos químicos do solo ao longo do tempo foi realizado o Experimento 1, utilizando um LATOSSOLO VERMELHO distrófico. O delineamento experimental foi de blocos casualizados, com quatro repetições, em esquema fatorial 2 x 5, com dois corretivos de acidez (calcário dolomítico e escória de aciaria) e cinco tratamentos, sendo uma testemunha (sem NPK), uma testemunha relativa (sem fósforo) e os demais tratamentos constituídos de diferentes fontes de fósforo (superfosfato triplo - ST; termofosfato - TM; fosfato natural reativo - FNR). Os corretivos de acidez tiveram mesmo efeito na elevação de pH do solo. A escória de aciaria resultou em maior teor de P apenas 30 dias após incubação. Independente do corretivo, 150 dias após a incubação, o teor de P no solo seguiu a ordem ST > TM = FNR > sem NPK = sem P. Para verificar os atributos químicos do solo, a nutrição e a produção de amendoim e do capim marandu em solos sob a influência dos corretivos de acidez e das fontes de fósforo, foram... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The low efficiency of utilization of phosphates fertilizers is influenced by the solubility of its sources. An alternative to improve the availability of P in soils and increase the use of fertilizers is the use of silicates. To evaluate the influence of the acidity correctives and sources of phosphorus in soil chemical properties over time, the Experiment 1 was performed using a Dystrophic Red Latosol. The experimental design was randomized blocks with four replications in a factorial scheme 2x5, with two acidity correctives (dolomitic limestone and steel slag) and five treatments, as a control (without NPK), a relative control (without phosphorus) and the other treatments consisting of different phosphorus sources (triple superphosphate - TS, thermo phosphate - TM and reactive natural phosphate - FNR). The acidity correctives had the same effect in the rise of soil pH, and the steel slag resulted in higher value than limestone in P resin in soil only 30 days after incubation. Independent of the acidity correctives, 150 days after incubation, the value of soil P followed the order ST > TM = FNR > sem NPK = sem P. To evaluate the chemical soil properties, nutrition and production of peanuts and grass in soils under the influence of the acidity correctives and phosphorus sources, were conducted the Experiments 2 and 3 in FCA - UNESP, Botucatu campus. In peanuts, the application of steel slag resulted in highest plants with biggest leaves+stalk dry matter production than limestone, however the grain dry matter per vase was biggest when the limestone was applied, following the order TM = FNR > ST > sem P in this corrective. In marandu grass, comparing the correctives, with steel slag the total production of dry matter was upper in the soil control and the limestone in... (Complete abstract click electronic access below) / Doutor
115

Soil organic matter decomposition : effects of organic matter addition on phosphorus dynamics in lateritic soils

Yusran, Fadly Hairannoor January 2005 (has links)
[Truncated abstract] Relationships between the persistence of organic matter added to soil, the dynamics of soil organic carbon (C) and phosphorus (P) were examined in four experiments on lateritic soils of Western Australia. The main objective was to quantify the release of P following organic matter application in soils which have high P adsorbing capacity. Another objective was to confirm that due to its recalcitrant materials, the effect of peat lasted longer in soil than other sources of organic matter in terms of increasing plant-available P fractions. Three experiments were conducted under glasshouse conditions for various lengths of time, with nine- to twelve-month incubations to investigate these hypotheses. As expected, organic matter with lower C:N ratios than peat (lucerne hay) decomposed more rapidly compared with peat, and the most active mineralisation took place within the first three months of incubation. Soil organic-C (extracted by 0.5 M K2SO4) had a significant positive correlation with P extracted with 0.5 M NaHCO pH 8.53. For a higher application rate (120 ton ha-1), peat was better than wheat straw and lucerne hay in increasing extractable bicarbonate-P concentrations in soil, especially at incubation times up to 12 months. Throughout the experiment, peat was associated with a steady increase in all parameters measured. In contrast to peat, nutrient release from lucerne hay and wheat straw was rapid and diminished over time. There was a tendency for organic-C (either in the form of total extractable organic-C or microbial biomass-C) to steadily increase in soil with added peat throughout the experiment. Unlike wheat straw and lucerne hay, extractable organic-C from peat remained in soil and there was less C loss in the form of respiration. Therefore, peat persisted and sequestered C to the soil system for a longer time than the other source of organic matter. Freshly added organic matter was expected to have a greater influence on P transformation from adsorbed forms in lateritic soils than existing soil organic matter. By removing the existing soil organic matter, the effect of freshly applied organic matter can be determine separately from that of the existing soil organic matter for a similar organic-C content. In order to do this, some soil samples were combusted up to 450° C to eliminate inherent soil organic matter. The release of P was greater when organic-C from fresh organic matter was applied to combusted soils than in uncombusted soils that contained the existing soil organic matter. The exception only applied for parameters related to soil micro-organisms such as biomass-C and phosphatase. For such parameters, new soil organic matter did not create conditions favourable for organisms to increase in activity despite the abundance of organic matter available. More non-extractable-P was formed in combusted soils compared to bicarbonate-P and it contributed to more than 50% of total-P. As for the first experiment, peat also showed a constant effect in increasing bicarbonate extractable-P in the soil
116

The effects of self-filtration on saturated hydraulic conductivity in sodic sandy soils

Dikinya, Oagile January 2007 (has links)
[Truncated abstract] Self-filtration is here defined as particle detachment and re-deposition causing re-arrangement of the particles and therefore pore space which affects water flow in soil by decreasing hydraulic conductivity. This is of particular important in soils which are susceptible to structural breakdown. The objective of this thesis was to examine the dynamics of the self-filtration process in sodic sandy soils as affected by ionic strength and soil solution composition. The temporal changes of hydraulic conductivity and the elution of fine particles from soil columns were used as the main criteria to assess selffiltration. Two porous media exhibiting significantly different structural cohesion were examined, one a loamy sand (Balkuling soil) from agricultural land use and the second a mining residue from mineral sands operations . . . The effects of the composition of mixed calcium (Ca) and sodium (Na) ions in solution (sodium adsorption ratio (SAR)) on the exchange behaviour and saturated hydraulic conductivity were examined by carrying out batch binary exchange and saturated column transport experiments. A strong preference for Ca2+ ions in the exchange complex was observed for both soils. Generally K/Ko was found to decrease with increasing sodium adsorption ratio with the more structured Balkuling soil maintaining K/Ko for SARs 3 and 5 at an electrolyte concentration of 100 mmol/L. However measurements at the critical threshold and turbidity concentrations at a SAR of 15 revealed structural breakdown of the pore matrix system attributed to various extents of slaking, swelling, dispersion and decreases of pore radii as a result of selffiltration during leaching. These experiments illustrate the wide range of complex interactions involving clay mineralogy, solution composition and structural factors which can influence the extent of mobilization, transport and re-deposition of colloidal particles during the leaching process in soil profiles.
117

Soil water movement through swelling soils

Ekanayake, Jagath C. January 1990 (has links)
The present work is a contribution to description and understanding of the distribution and movement of water in swelling soils. In order to investigate the moisture distribution in swelling soils a detailed knowledge of volume change properties, flow characteristics and total potential of water in the soil is essential. Therefore, a possible volume change mechanism is first described by dividing the swelling soils into four categories and volume change of a swelling soil is measured under different overburden pressures. The measured and calculated (from volume change data) overburden potential components are used to check the validity of the derivation of a load factor, ∝. Moisture diffusivity in swelling soil under different overburden pressures is measured using Gardner's (1956) outflow method. Behaviour of equilibrium moisture profiles in swelling soils is theoretically explained, solving the differential equation by considering the physical variation of individual soil properties with moisture content and overburden pressure. Using the measured volume change data and moisture potentials under various overburden pressures, the behaviour of possible moisture profiles are described at equilibrium and under steady vertical flows in swelling soils. It is shown that high overburden pressures lead to soil water behaviour quite different from any previously reported.

Page generated in 0.09 seconds