• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Landslide Stabilization Using Drilled Shafts in Static and Dynamic Conditions

Erfani Joorabchi, Arash 01 August 2011 (has links)
No description available.
2

Analysis of sequential active and passive arching in granular soils

Aqoub, K., Mohamed, Mostafa H.A., Sheehan, Therese 17 May 2018 (has links)
Yes / Arching in soils has received great attention due to its significance on the soil–underground structure interaction. The state of stress on underground structures as a result of cycles of active and passive arching was neither explored nor systematically assessed. In the present study, comprehensive investigation was carried out to examine: i. the effects of displacement direction to induce active or passive arching, ii. the behaviour of subsequent arching, iii. the effect of magnitude of initial displacement on the formation of arching and iv. the influence of soil height on sequential active and passive arching. The results showed that alternating the displacement of the underground inclusion exacerbated the formation of active and passive arching leading to a substantial reduction in shear resistance and stress redistribution. It is noted that sequentially alternating displacement of the underground inclusion was detrimental to the formation of full active and passive arches irrespective of the burial height.
3

Contribuição ao projeto estrutural de galerias de concreto pré-moldado com seções transversais não usuais / Contribution to the study of precast concrete culverts with unusual cross sections

Domingues, Aline Bensi 20 March 2017 (has links)
As galerias enterradas são amplamente utilizadas em obras de arte corrente (OAC) na infraestrutura de rodovias e ferrovias. Visando disponibilizar mais alternativas na produção de galerias de concreto pré-moldado, a pesquisa apresenta uma análise comparativa de custos para seções transversais não usuais, direcionado a grandes profundidades de instalação. A primeira seção proposta é denominada modificada e é composta por uma base retangular com uma cobertura em arco e a segunda seção proposta é definida por três arcos com uma base plana. Essas seções além de possuir formato de geometria favorável à distribuição dos esforços solicitantes, mantêm o benefício de possibilitar uma compactação adequada do solo na lateral da galeria, como acontece em galerias retangulares convencionais, e isso garante o confinamento do solo e a redistribuição de pressões, graças à mobilização do efeito de arqueamento. Para considerar a interação solo-estrutura foram realizadas análises via elementos finitos com o pacote computacional GeoStudio® próprio para análises geotécnicas. Os resultados comprovaram a interferência do formato das geometrias no comportamento da interação solo-galeria e também evidenciaram que a redução da espessura das paredes da galeria mobiliza em maior intensidade a capacidade resistente do solo e isso reduz os esforços na estrutura. Quanto à análise dos dimensionamentos, com base na comparação dos custos evidenciou-se que, para as galerias modificadas a redução das taxas de armadura está relacionada com flecha do arco da cobertura, sendo que a economia verificada no custo total de materiais das seções estudadas variou de 4 a 29% comparado à galeria retangular. Para a galeria definida por três arcos, confirmou-se que quanto mais alongado for o seu formato, melhor é o comportamento à grandes profundidades de instalação, sendo que a economia verificada no custo total da galeria mais elíptica (DTA I-b) chegou a 50% em relação à galeria retangular e demais geometrias estudadas tiveram economia entre 17 e 42%. / Box culverts are often used in current drainage in the infrastructure of highways and railways. In order to provide more production\'s alternatives of precast concrete culvert, the research presents the comparative cost analysis for unusual cross sections, directed to large depths of installation. The first proposed cross section called modified culvert is composed of a rectangular base with an arc roof. The second is defined by three arcs with a flat base. These cross sections have geometric shapes favorable to the distribution of bending moment and shear forces. It maintains the benefit of adequate compaction of the backfill at the side of the culvert, as well as in conventional box culvert, which ensures ground confinement and pressure redistribution due to the mobilization of the arching effect. In order to consider the soil-structure interaction, finite element analyzes were performed using GeoStudio® software, which is a computational package specific for geotechnical analysis. The results showed that the geometries have influence on the behavior of the soil-culvert interaction, and that the reduction of the thickness of the culvert walls mobilizes the soil resistant capacity, reducing the stresses in the structure. Regarding the structural design, considering the comparison of costs, it was evidenced a reduction of steel reinforcements for the modified culvert, which is related to the arrow of the arc of the cover. The materials saving verified in the total cost of the studied sections ranged from 4% to 29% compared to the box culvert. For the culvert defined by three arches, it was evidenced that the more elongated its geometry, better the behavior for the great depths of installation. The highest materials saving was verified in the total cost of the most elliptical culvert (DTA I-b), which reached a value of 50%. Compared to the box culvert, the others geometries studied had savings between 17-42%.
4

3D modelling of Soft soil Improvement by Rigid Inclusions - Complex and Cyclic loading / Modélisation tridimensionnelle de l'amélioration des sols par des inclusions rigides - Chargement complexe et cyclique

Pham, Van Hung 17 September 2018 (has links)
Le but de cette étude est d'étudier le renforcement des sols par inclusions rigides sous chargement complexe et cyclique. L'effet de certains paramètres liés à la définition d’un chargement complexe et cyclique sur le comportement du système est mis en évidence.Du point de vue des chargements statiques complexes, des semelles de fondation posées sur un sol compressible renforcé par inclusions rigides sans matelas soumis à des charges centrées, excentrées verticales et horizontales et à quelques cycles de charge ont été étudiées. Des approches numériques et expérimentales sont présentées. Les résultats des mesures expérimentales et numériques permettent de mettre en évidence le comportement de ces systèmes en termes de contrainte sur la tête d'inclusion et sur le sol compressible, de déplacements verticaux et latéraux de la semelle et du déplacement latéral de l'inclusion. L'efficacité de la semelle renforcée est comparée à celle d’une semelle non renforcée.Une modélisation 3D de solutions de fondations pour les éoliennes est étudiée. La combinaison d’un chargement vertical et de différents moments appliqués à la fondation est prise en compte. Le sol compressible renforcé par inclusions rigides est considéré comme une option qui est comparée à d’autres solutions plus classiques (fondation superficielle et radier sur pieux). Les résultats obtenus permettent de présenter l’impact sur le tassement du sol, la rotation de la fondation, les efforts axiaux et les moments fléchissants dans les inclusions rigides. Les résultats numériques indiquent enfin que la technique d'amélioration du sol par inclusions rigides peut être une solution appropriée pour les fondations d'éoliennes.En ce qui concerne les aspects cycliques, trois points principaux sont abordés. Dans un premier temps, la modélisation numérique d’essais en laboratoire d’un renforcement de sol par inclusions rigides soumis à des chargements monotones et des cycles limités de chargement mise en œuvre. Le modèle hypoplastique (HYP) est utilisé pour modéliser le comportement de la plate-forme de transfert de charge. Les résultats numériques sont validés à la fois par rapport aux données expérimentales et numériques de Houda (2016). L'influence des conditions aux limites et de l'état du sol compressible est mise en évidence. Les résultats numériques indiquent qu'il est possible de considérer le comportement cyclique du sol renforcé par inclusions rigides en utilisant le modèle HYP.Dans un second temps, un remblai renforcé par des inclusions rigides sous un nombre élevé de chargement cyclique est étudié. Deux niveaux de complexité différents pour le modèle constitutif (HYP et le modèle élastique linéaire parfaitement plastique avec un critère de rupture de type Mohr-Coulomb) ont été pris en compte pour étudier le comportement de la LTP et analyser le comportement cyclique du système. Le modèle HYP est proposé pour la suite des études car il permet de bien capturer la décroissance et l’accumulation des tassements avec le nombre de cycles de charge. L'effet des paramètres qui sont le nombre de cycles de charge, l'amplitude et la fréquence (induite par la vitesse du trafic) et la hauteur du remblai est également présentée.Finalement, une étude sur la réponse cyclique d'un remblai de GRPS est menée. En comparant le remblai renforcé par des géosynthétiques (GRPS) avec le remblai renforcé par inclusions (PE), le rôle du géosynthétique est mis en évidence sous des chargements statiques et cycliques. L'influence du nombre de cycles de chargement et du nombre de géosynthétiques sur l'effet de voute et les tassements cumulés est également discutée. / The aim of the study is to investigate the soil improvement by rigid inclusions under complex and cyclic loadings, and to highlight the effect of some parameters related to complex and cyclic loading on the system behavior.Concerning the static complex loading, footings over rigid inclusion-reinforced soil without mattress subjected to centered, eccentrically vertical and horizontal loads, and load cycles are first studied. Numerical and experimental approaches are presented. Monitored and numerical results permit to show the behavior of these reinforced systems in terms of stresses on the inclusion head and soft soil, vertical and lateral displacements of the footings and lateral displacement of the inclusions. The efficiency of the reinforced footing is also presented and compared to the unreinforced one.A 3D modeling of the foundation solutions for wind turbines is presented. The combination of vertical loading and different moments applied to the foundation is taken into account. The inclusion-improved soft soil under footing is considered as a foundation option and, compared to classical ones (shallow foundation and piled raft). The obtained results are illustrated concerning the ground surface settlements, the foundation rotations, the axial forces and bending moments of the reinforcements. The numerical results indicate that the soil improvement technique by rigid inclusions can be an appropriate solution for the wind turbine foundations.With regard to the cyclic aspects, three main concerns are studied. Firstly, the numerical modeling of laboratory tests on a soil improvement by rigid inclusions subjected to monotonic loading and a limited load cycles is carried out, in which the hypoplasticity (HYP) model is used to model the load transfer platform (LTP). The numerical results are validated against both the experimental data and numerical ones of Houda (2016). The influence of the boundary condition and soft soil state are figured out. The numerical results indicate that it is possible to address the cyclic behavior of the rigid inclusion-reinforced soil by using the HYP model.Secondly, a piled embankment under a high number of cyclic loadings is studied. Two different levels of complexity for the constitutive models are used (HYP and a simpler one the linear elastic perfectly plastic constitutive model with a shear criteria of Mohr-Coulomb). These models were considered to model the behavior of the LTP and analyze the cyclic behavior of the system. The HYP model is then suggested for the following studies since it can capture well the arching decrease and the cumulated settlements under the load cycles number. The effect of the parameters that are load cycles number, amplitude and frequency (induced by traffic speed), and embankment height is illustrated as well.Finally, a study on the cyclic response of a GRPS embankment is conducted. By comparing the geosynthetic-reinforced pile-supported (GRPS) embankment with the piled embankment (PE), the role of the geosynthetic is verified under static and cyclic loading aspects. The influence of the load cycles number and the geosynthetic layers number on the arching effect and cumulative settlements is shown as well.
5

Contribuição ao projeto estrutural de galerias de concreto pré-moldado com seções transversais não usuais / Contribution to the study of precast concrete culverts with unusual cross sections

Aline Bensi Domingues 20 March 2017 (has links)
As galerias enterradas são amplamente utilizadas em obras de arte corrente (OAC) na infraestrutura de rodovias e ferrovias. Visando disponibilizar mais alternativas na produção de galerias de concreto pré-moldado, a pesquisa apresenta uma análise comparativa de custos para seções transversais não usuais, direcionado a grandes profundidades de instalação. A primeira seção proposta é denominada modificada e é composta por uma base retangular com uma cobertura em arco e a segunda seção proposta é definida por três arcos com uma base plana. Essas seções além de possuir formato de geometria favorável à distribuição dos esforços solicitantes, mantêm o benefício de possibilitar uma compactação adequada do solo na lateral da galeria, como acontece em galerias retangulares convencionais, e isso garante o confinamento do solo e a redistribuição de pressões, graças à mobilização do efeito de arqueamento. Para considerar a interação solo-estrutura foram realizadas análises via elementos finitos com o pacote computacional GeoStudio® próprio para análises geotécnicas. Os resultados comprovaram a interferência do formato das geometrias no comportamento da interação solo-galeria e também evidenciaram que a redução da espessura das paredes da galeria mobiliza em maior intensidade a capacidade resistente do solo e isso reduz os esforços na estrutura. Quanto à análise dos dimensionamentos, com base na comparação dos custos evidenciou-se que, para as galerias modificadas a redução das taxas de armadura está relacionada com flecha do arco da cobertura, sendo que a economia verificada no custo total de materiais das seções estudadas variou de 4 a 29% comparado à galeria retangular. Para a galeria definida por três arcos, confirmou-se que quanto mais alongado for o seu formato, melhor é o comportamento à grandes profundidades de instalação, sendo que a economia verificada no custo total da galeria mais elíptica (DTA I-b) chegou a 50% em relação à galeria retangular e demais geometrias estudadas tiveram economia entre 17 e 42%. / Box culverts are often used in current drainage in the infrastructure of highways and railways. In order to provide more production\'s alternatives of precast concrete culvert, the research presents the comparative cost analysis for unusual cross sections, directed to large depths of installation. The first proposed cross section called modified culvert is composed of a rectangular base with an arc roof. The second is defined by three arcs with a flat base. These cross sections have geometric shapes favorable to the distribution of bending moment and shear forces. It maintains the benefit of adequate compaction of the backfill at the side of the culvert, as well as in conventional box culvert, which ensures ground confinement and pressure redistribution due to the mobilization of the arching effect. In order to consider the soil-structure interaction, finite element analyzes were performed using GeoStudio® software, which is a computational package specific for geotechnical analysis. The results showed that the geometries have influence on the behavior of the soil-culvert interaction, and that the reduction of the thickness of the culvert walls mobilizes the soil resistant capacity, reducing the stresses in the structure. Regarding the structural design, considering the comparison of costs, it was evidenced a reduction of steel reinforcements for the modified culvert, which is related to the arrow of the arc of the cover. The materials saving verified in the total cost of the studied sections ranged from 4% to 29% compared to the box culvert. For the culvert defined by three arches, it was evidenced that the more elongated its geometry, better the behavior for the great depths of installation. The highest materials saving was verified in the total cost of the most elliptical culvert (DTA I-b), which reached a value of 50%. Compared to the box culvert, the others geometries studied had savings between 17-42%.
6

Analysis of dynamic loading behaviour for pavement on soft soil

Widodo, Slamet 20 January 2014 (has links) (PDF)
The increasing need for regional development has led engineers to find safe ways to construct the infrastructure of transportation on soft soils. Soft soil is not able to sustain external loads without having large deformations. The geotechnical properties of soft soil which is known for its low bearing capacity, high water content, high compressibility and long term settlement as well. In pavement engineering, either highway or runway as an infrastructure, a pavement encompasses three important parts namely traffic load, pavement and subgrade. Traffic load generated from tire pressure of vehicle and/or airplane wheels are usually around 550 kPa even more on the surface of the pavement. Pavement generally comprises granular materials with unbounded or bounded materials located between traffic load and subgrade, distributing the load to surface of subgrade. One of the promising soil improvement techniques is a piled embankment. When geosynthetics layer is unrolled over piles, it is known as geosynthetics supported piled embankment. Particularly in deep soft soil, when piles do not reach a hard stratum due to large thickness of the soft soil, the construction is an embankment on floating piles. Furthermore, because of different stiffness between piles and subsoil, soil arching effect would be developed there. By using Finite Element analysis, some findings resulted from experimental works and several field tests around the world as field case studies are verified. Some important findings are as follows: the stress concentration ratio is not a single value, but it would be changed depending on the height of embankment, consolidation process of subsoil, surcharge of traffic load, and tensile modulus of geosynthetics as well. Ratio height of embankment to clear piles spacing (h/s) around 1.4 can be used as a critical value to distinguish between low embankment and high embankment. When geosynthetics is applied to reinforce a pavement/embankment, the vertical distance of geosynthetics layers and number of geosynthetics layers depend on the quality of pavement material. The lower layer of geosynthetics withstands a tensile stress higher than upper layer. Primary reinforcements for geosynthetics in piled embankments are located at span between piles with maximum strains at zones of adjacent piles. Traffic load that passes through on the surface of the pavement can reduce the soil arching, but it can be restored during the off peak hours. Settlements of embankments on floating piles can accurately be modelled using the consolidation calculation type, whereas the end-bearing piles may be used the plastic calculation type. Longer piles can be effectively applied to reduce a creep. By applying length of floating piles more than 20% of soft soil depth, it would have a significant impact to reduce a creep on a deep soft soil.
7

Analysis of dynamic loading behaviour for pavement on soft soil

Widodo, Slamet 19 November 2013 (has links)
The increasing need for regional development has led engineers to find safe ways to construct the infrastructure of transportation on soft soils. Soft soil is not able to sustain external loads without having large deformations. The geotechnical properties of soft soil which is known for its low bearing capacity, high water content, high compressibility and long term settlement as well. In pavement engineering, either highway or runway as an infrastructure, a pavement encompasses three important parts namely traffic load, pavement and subgrade. Traffic load generated from tire pressure of vehicle and/or airplane wheels are usually around 550 kPa even more on the surface of the pavement. Pavement generally comprises granular materials with unbounded or bounded materials located between traffic load and subgrade, distributing the load to surface of subgrade. One of the promising soil improvement techniques is a piled embankment. When geosynthetics layer is unrolled over piles, it is known as geosynthetics supported piled embankment. Particularly in deep soft soil, when piles do not reach a hard stratum due to large thickness of the soft soil, the construction is an embankment on floating piles. Furthermore, because of different stiffness between piles and subsoil, soil arching effect would be developed there. By using Finite Element analysis, some findings resulted from experimental works and several field tests around the world as field case studies are verified. Some important findings are as follows: the stress concentration ratio is not a single value, but it would be changed depending on the height of embankment, consolidation process of subsoil, surcharge of traffic load, and tensile modulus of geosynthetics as well. Ratio height of embankment to clear piles spacing (h/s) around 1.4 can be used as a critical value to distinguish between low embankment and high embankment. When geosynthetics is applied to reinforce a pavement/embankment, the vertical distance of geosynthetics layers and number of geosynthetics layers depend on the quality of pavement material. The lower layer of geosynthetics withstands a tensile stress higher than upper layer. Primary reinforcements for geosynthetics in piled embankments are located at span between piles with maximum strains at zones of adjacent piles. Traffic load that passes through on the surface of the pavement can reduce the soil arching, but it can be restored during the off peak hours. Settlements of embankments on floating piles can accurately be modelled using the consolidation calculation type, whereas the end-bearing piles may be used the plastic calculation type. Longer piles can be effectively applied to reduce a creep. By applying length of floating piles more than 20% of soft soil depth, it would have a significant impact to reduce a creep on a deep soft soil.

Page generated in 0.0905 seconds