Spelling suggestions: "subject:"soil geochemistry"" "subject:"soil biogeochemical""
1 |
Carbon and contaminant trace metal biogeochemistry in surficial organic-rich terrestrial systemsBlair, David Stanley Hamilton January 2014 (has links)
Peats and organic-rich soils are a key part of the global carbon (C) cycle due to their sequestration and storage of atmospheric C as organic matter. Atmospheric deposition as a result of human activities has led to increased inventories of lead (Pb) and mercury (Hg) in UK peats and organic-rich soils. Ombrotrophic peat bogs, which receive all their nutrients and pollutants from the atmosphere, provide a historic record of Pb and Hg deposition within their solid phase. Organic-rich forest soil systems can also act as sinks for anthropogenic Pb but vertical transport of Pb can distort these temporal records. The long-term outlook may, however, be affected by processes which lead to decomposition of organic matter e.g. drying out of peatlands and soils due to climatic change, since these may release Pb into the aqueous phase and volatile Hg to the atmosphere. The associations and speciation of Pb and Hg within peats and organic-rich soils are not well understood but are key to understanding both the potential for release of these pollutants into other environmental compartments and the risks to ecosystems and human health posed by such a release. Investigation of 4 sites in central Scotland showed that, depending on vertical depth, ~40-99% of Pb in ombrotrophic peat was in association with large (0.22 μm – 100 kDa) humic molecules. Near-surface regions where intact plant material had not yet undergone complete humification showed the lowest proportion of Pb-humic association. Historical Pb deposition was retained to similar degrees across each site with recorded inventories to 1986 of 0.340-0.561 g m-2. However, perturbation of the 206Pb/207Pb isotope ratio profile at Glentress forest indicated that limited migration of petrol-sourced Pb may be occurring. Similarly, perturbation of the 210Pb profile at Auchencorth Moss, in addition to discrepancies in the apparent time period in which peak Pb deposition occurred, indicated that Pb may also be subject to migration within this ombrotrophic system. With respect to Hg, between-site differences in speciation were observed. For example, Hg2+ represented < 25% of the total Hg species in the top 10 cm of solid phase ombrotrophic peat but > 50% of the total in forest soil. In contrast, aqueous phase Hg was entirely in the inorganic form across all sites. The occurrence of a solid phase [Hg] peak in layers corresponding to the ~1955 height of coal burning, in addition to the narrow range of peatland Hg inventories to 1950 (2.20-3.23 g m-2) provide evidence that Hg deposition records may be maintained in organic-rich systems to a greater degree than previously assumed. Differences observed in the associations of Pb and the speciation of Hg between the surface vegetation of ombrotrophic bogs and the underlying peat suggests that plants play an integral role in the biogeochemical behavior and sequestration of Pb and Hg in these terrestrial systems.
|
2 |
Soil Microbial and Nutrient Dynamics During Late Winter and Early Spring in Low Arctic Sedge MeadowsEdwards, Katherine 14 February 2011 (has links)
Microbial activity occurs year-round in Arctic soils, including during the winter when soils are frozen. From 2004 to 2008 I monitored soil microbial and nutrient dynamics in low Arctic wet and dry sedge meadows near Churchill, Manitoba. I documented a consistent annual pattern in which soil microbial biomass (MB) and soil nutrients peak in late winter, and decrease during the early stages of spring thaw, remaining in low abundance during the summer. Based on a series of experiments, resource shortages do not appear to be the cause of the microbial decline, as has been hypothesized. Observations and theoretical considerations regarding soil physical properties indicate that this decrease is driven by the influx of liquid water at thaw that brings about a rapid change in the chemical potential of water, leading to cell lysis. I have used 15N isotope tracing to show that inorganic nitrogen is taken up very quickly at thaw by the roots of the dominant plant, Carex aquatilis. This represents a critical window of opportunity for these plants, as nitrogen remains abundant only for a short time.
The described annual pattern was pronounced in wet sedge sites, but some inter-annual variation is evident, for example a post-thaw soil nitrogen pulse in 2006, and low winter MB in 2008. In the dry sedge meadow, fluctuations in MB and nutrients were dampened relative to wet sites, and the annual pattern was variable, particularly after 2006. Over four years, peak winter values of soil MB and nutrient variables declined in both wet and dry sites, and this could be related to a drying trend.
This work improves our understanding of the controls on decomposition and primary productivity in a system that is experiencing climate warming and increased precipitation. Changes to hydrology, carbon and nitrogen cycling, and primary productivity will have further effects on vegetation communities and higher trophic levels, including several species of migratory birds.
|
3 |
Methane cycling in upland soils of the Peruvian Andes and AmazonJones, Samuel Peter January 2015 (has links)
Significant discrepancies exist in global estimates of the atmospheric methane (CH4) budget. This is particularly true for tropical South America where bottom-up approaches, rooted in field observation, tend to under estimate atmospheric observations. As such, a better understanding of soil environments, which are capable of acting as both source and sink for atmospheric CH4, is required. Soil-atmosphere CH4 exchange is fundamentally determined by the balance between strictly anaerobic methanogenic and aerobic methanotrophic microbial processes. For this reason, CH4 emissions are typically associated with anoxic wetland soils, whilst, oxic upland soils are thought to uptake CH4 from the atmosphere. However, there is increasing evidence that upland soils may act as sources of CH4 through methanogenic activity within cryptic wetlands or anoxic microsites. This thesis aims to: document soil-atmosphere CH4 fluxes in poorly represented tropical upland and montane ecosystems, investigate controls on CH4 flux with a focus on soil oxygen (O2) concentration and investigate relationships between methanogenic and methanotrophic processes under oxic conditions. These aims are addressed in three chapters focusing on lowland terra firme, premontane and montane forests and montane humid puna grasslands and wetlands along an Amazonian to Andean transect spanning ~ 3300 m of elevation in southeastern Peru. In the lowland rainforest intensive seasonal field campaigns and laboratory incubations were conducted on higher porosity ultisol and lower porosity inceptisol soils. Mean (s.e.) net CH4 fluxes for dry and wet seasons were, respectively, -1.59 (0.06) and - 1.39 (0.07) mg CH4-C m−2 d−1 for the ultisol and -0.95 (0.06) and -0.41 (0.10) mg CH4-C m−2 d−1 for the inceptisol. Greater uptake rates in the ultisol than the inceptisol were best explained by lower water-filled pore space (WFPS). Similarly, WFPS best explained between season variation in net CH4 flux from the inceptisol, whilst, we were unable to explain the smaller variations observed for the ultisol. Methanogenic processes were active in both the ultisol and inceptisol soils despite oxic conditions. In the premontane and montane forests, long-term monthly field measurements were conducted over two and a half years in premontane, lower montane and upper montane settings. Mean (s.e.) net CH4 fluxes for aggregated dry and wet season months were, respectively, -0.20 (0.15) and -0.08 (0.13) mg CH4-C m−2 d−1 for the premontane forest, -1.12 (0.13) and -0.97 (0.11) mg CH4-C m−2 d−1 for the lower montane forest and -1.55 (0.13) and -1.04 (0.11) mg CH4-C m−2 d−1 for the upper montane forest. Increased uptake with elevation was best explained by decreases in WFPS. Significant variation in net CH4 flux between seasons, driven by variation in WFPS, was only identified for the upper montane forest.
|
4 |
Soil Microbial and Nutrient Dynamics During Late Winter and Early Spring in Low Arctic Sedge MeadowsEdwards, Katherine 14 February 2011 (has links)
Microbial activity occurs year-round in Arctic soils, including during the winter when soils are frozen. From 2004 to 2008 I monitored soil microbial and nutrient dynamics in low Arctic wet and dry sedge meadows near Churchill, Manitoba. I documented a consistent annual pattern in which soil microbial biomass (MB) and soil nutrients peak in late winter, and decrease during the early stages of spring thaw, remaining in low abundance during the summer. Based on a series of experiments, resource shortages do not appear to be the cause of the microbial decline, as has been hypothesized. Observations and theoretical considerations regarding soil physical properties indicate that this decrease is driven by the influx of liquid water at thaw that brings about a rapid change in the chemical potential of water, leading to cell lysis. I have used 15N isotope tracing to show that inorganic nitrogen is taken up very quickly at thaw by the roots of the dominant plant, Carex aquatilis. This represents a critical window of opportunity for these plants, as nitrogen remains abundant only for a short time.
The described annual pattern was pronounced in wet sedge sites, but some inter-annual variation is evident, for example a post-thaw soil nitrogen pulse in 2006, and low winter MB in 2008. In the dry sedge meadow, fluctuations in MB and nutrients were dampened relative to wet sites, and the annual pattern was variable, particularly after 2006. Over four years, peak winter values of soil MB and nutrient variables declined in both wet and dry sites, and this could be related to a drying trend.
This work improves our understanding of the controls on decomposition and primary productivity in a system that is experiencing climate warming and increased precipitation. Changes to hydrology, carbon and nitrogen cycling, and primary productivity will have further effects on vegetation communities and higher trophic levels, including several species of migratory birds.
|
5 |
Determining the biological turnover rate of phosphate in agricultural soils using stable oxygen isotopesDuffy, Margaret R. 10 August 2020 (has links)
No description available.
|
6 |
Influence des facteurs biotiques et abiotiques sur la dynamique de la matière organique du sol à partir de la caractérisation biogéochimique des matières organiques solubles / Influence of biotic and abiotic factors on soil organic matter dynamics assessed by the biogeochemical characterisation of soluble organic matterGuigue, Julien 08 December 2014 (has links)
Les sols sont le plus grand réservoir de carbone des écosystèmes terrestres, et la minéralisation des matières organiques par l’activité microbienne représente la majeure partie des flux de CO2 émis à la surface des continents.Dans ce travail, nous avons étudié les matières organiques extraites à l’eau (WEOM), qui correspondent à la fraction la plus réactive des matières organiques du sol (MOS). Nos objectifs étaient (i) d’identifier les liens de la dynamique du WEOM avec les communautés bactériennes, et avec les paramètres physico-chimiques du sol ; (ii) de réaliser une caractérisation chimique précise du WEOM.Il existe un lien fort entre la solubilité des MOS et les structures des communautés bactériennes, et une baisse de leur diversité impacte la dynamique des MOS et du WEOM, et provoque une baisse de la minéralisation des matières organiques. Une étude à l’échelle régionale a également permis d’identifier que les taux de MOS et d’argile contrôlent les quantités de WEOM et leur aromaticité. La caractérisation au niveau moléculaire a montré la présence d’un grand nombre de molécules ubiquistes dans le WEOM. À partir de ces analyses, nous avons également pu décrire les effets du couvert végétal et des propriétés physico-chimiques des sols sur la composition chimique du WEOM. / Soils are the greatest reservoir of C on the continents, and organic matter mineralisation bymicrobial activity represents the major part of the CO2 emitted by terrestrial ecosystems.In this work, we studied water-extractable organic matter (WEOM), which corresponds to themore reactive fraction of soil organic matter (SOM). Our objectives were (i) to identify therelationships of WEOM dynamics with bacterial communities, and with soil physico-chemicalparameters; (ii) to provide a precise chemical characterisation of WEOM.There is a strong link between SOM solubility and the structure of bacterial communities, andan erosion of their diversity has an impact on SOM and WEOM dynamics, and leads to adecrease in organic matter mineralisation. A study at the regional scale then allowed us to identifythat the SOM and clay contents control the quantities of WEOM and its aromaticity. TheWEOM characterisation at the molecular level revealed the presence of a large number ofubiquitous molecules in the WEOM. Based on these analyses, we were also able to describe theeffects of vegetation and soil physico-chemical properties on the chemical composition ofWEOM.
|
Page generated in 0.0801 seconds