• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 1
  • Tagged with
  • 52
  • 52
  • 51
  • 48
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

EMERGENCE RESPONSE OF SUNFLOWER CULTIVARS (Helianthus annuus L.) TO PLANTING TECHNIQUES AND SOIL FACTORS

Schlebusch, L 19 August 2014 (has links)
South Africa mainly produces oil seed sunflowers of which 86% is produced in the Free State and North West provinces which are known for their sandy soils. Temperatures can rise to 42°C in these soils when planting commences during November to January. These conditions, in combination with other factors such as planting date and planting depth, soil type, different cultivars, and seedling vigour, can influence the emergence rate of sunflower seedlings. This will cause uneven stand which could affect the yield negatively. In an attempt to evaluate the influence of soil factors and planting techniques on sunflower emergence, three experiments were conducted in the greenhouse at the Department of Soil, Crop and Climate Sciences of the University of the Free State. These experiments evaluated the effect of seed size, planting techniques, and soil factors, and high soil temperatures on the emergence rate of selected sunflower cultivars. Three seed sizes (seed size one to three) of three cultivars (PAN 7049, PAN 7057, and PAN 7063) were planted at two planting depths (25 and 50 mm respectively) during three planting dates (September 2010, November 2010, and February 2011) to determine the influence on the emergence rate of seedlings. It was found that a smaller seed size, such as seed size three, emerged faster than larger seeds, seed size one. The influence of two planting depths (25 and 50 mm) during the previously mentioned planting dates with two soil types (Bainsvlei and Tukulu) on the emergence of sunflower seedlings was also tested. Cultivar emergence was faster at 25 than at 50 mm. It was also observed that the emergence rate was faster during February 2011 than during September and November 2010. Although the emergence was faster during February 2011, above ground growth (plant height and dry weight) was greater during November 2010 than during September 2010 and February 2011. The influence of four soil temperatures (35, 40, 45, and 50°C respectively) on the emergence of sunflower cultivars was tested. An under floor heating wire (23 kW) was attached to a galvanised metal grid and was used to simulate day and night temperatures in the top soil. The grid and seed were placed at a depth of 25 mm (planting depth). Emergence index declined gradually from 35 to 45°C, but a rapid decline in emergence index was observed from 45 to 50°C. Emergence can be measured or calculated as an emergence index. Emergence is determined as the moment that the seedling is visible above the ground and different formulas exist to determine the emergence. Experiments differ from one another and therefore different emergence index models were developed to accommodate the experiment methods or crop that was used. It can therefore be concluded that differences in emergence exist between cultivars. It is also necessary for producers to acknowledge that soil factors and planting techniques play a vital role during planting until the seedling emerge.
52

CO2 emission and O2 uptake of soil under different systems / Emissão de CO2 e captura de O2 do solo em diferentes sistemas

Almeida, Risely Ferraz [UNESP] 21 February 2017 (has links)
Submitted by RISELY FERRAZ ALMEIDA (rizely@gmail.com) on 2017-03-22T01:11:45Z No. of bitstreams: 1 Tese_Risely_Ferraz_Almeida.pdf: 1907638 bytes, checksum: 54826ce5c26a680dbbfdb607f7d4cad5 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-22T20:23:04Z (GMT) No. of bitstreams: 1 almeida_rf_dr_jabo.pdf: 1907638 bytes, checksum: 54826ce5c26a680dbbfdb607f7d4cad5 (MD5) / Made available in DSpace on 2017-03-22T20:23:04Z (GMT). No. of bitstreams: 1 almeida_rf_dr_jabo.pdf: 1907638 bytes, checksum: 54826ce5c26a680dbbfdb607f7d4cad5 (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O oxigênio (O2) e o dióxido de carbono (CO2) no solo são os dois principais gases relacionados com a atividade dos microorganismos no solo. Assim, esta tese foi desenvolvida para observar a concentração e a relação entre a concentração do CO2 e O2 sob diferentes sistemas de resíduos. Para isso, realizamos dois experimentos de solo no Brasil e nos EUA, respectivamente. O primeiro experimento foi desenvolvido para examinar a relação entre fluxo de CO2 (FCO2) e o fluxo de O2 (FO2) usando a umidade do solo e o O2 como um predictor da respiração do solo em uma área de cana-de-açúcar sob diferentes manejos de resíduos (colheita mecânica - GH versus colheita queimada – BH). Portanto, os resultados do primeiro experimento estão descritos no Capítulo 2 e sendo intitulado de "Uso da captura de O2 como índice de respiração de CO2 em áreas de cana-de-açúcar sob diferentes manejos". O segundo experimento do solo observou o impacto do biochar na emissão ou sorção de CO2 e O2 nos solos. Assim, foram estudados três tipos de solos (Rosemount - RM, Potting Sol Sunshine - PS e UM), cinco biochars diferentes (biochar de chip de pinho - ICM, biochar de Carvalho Oak Royal - RO, biochar Acurel ativado - AAC, biochar de Bambu - B; biochar de Macadâmia - MC) e o tratamento controle (solo sem biochar). Consequentemente, os resultados foram descritos no Capítulo 3 e intitulado "Como a captura de O2 pode nos ajudar a entender os processos de sorção de CO2 via biochar?". Assim, nós podemos concluir com os nossos resultados que a concentração e relação entre FCO2 e FO2 dependem dos diferentes sistemas e condições dos solos estudados, tais como: manejo de resíduos de culturas do solo, umidade do solo e uso de biochar. O FO2 está positivamente correlacionado com o FCO2 via atividade biológica e com valores de coeficientes respiratório (RQ) próximos de 1,0. Além disso, podemos observar que valores de RQ maiores que 1 são resultados dos fluxos de troca solo-gás após precipitação ou maior disponibilidade de O2 no meio. Assim, o FO2 pode ser utilizado como um índice para categorizar uma fonte de respiração de CO2. Para concluir, o biochar pode ser utilizado para sequestrar CO2 da atmosfera em curto período de tempo. No entanto, acreditamos que mais estudos devem ser desenvolvidos para elucidar a sorção de CO2 e O2 pelo biochar e suas reações (biológicas e/ou químicas) quando adicionado biochar no solo. / The soil O2 and CO2 concentration are the two most important gases related to soil microorganisms. Thus, this thesis was developed to observe the concentration and relationship between carbon dioxide (CO2) and oxygen (O2) under different residue systems. For that, we run two soil experiments in Brazil and the USA, respectively. The first experiment was developed to examine the relationship between CO2 and O2 using soil moisture and O2 as a soil respiration predictor in a sugarcane area under different managements of residues (mechanical harvesting - GH versus straw burning - BH). Therefore, the first experimental results are described in the Chapter 2 and entitled “Use of O2 uptake as an index of CO2 respiration in sugarcane areas under different managements”. We run the second soil experiment measuring biochar’s impact on CO2 production or sorption and O2 uptake in amended soils. Thus, we studied three soil types (Rosemount - RM; Potting soil Sunshine - PS; and UM) and five different biochars (Pine chip biochar - ICM; Royal Oak hardwood lump charcoal - RO; Accurel activated charcoal - AAC; Bamboo - B; and Macadamia nut - MC) and control treatment (Soil without biochar). Consequently, the results are described in the Chapter 3 and entitled “How O2 uptake can help us understand the CO2 sorption processes by biochar?”. Thus, we can conclude with our results that the concentration and relationship between FCO2 and FO2 depend on different systems and soil conditions, for example: soil crop residue managements, soil moisture and use of biochar. The FO2 is positively correlated with FCO2 at biological condition with respiratory quotient (RQ) values close to 1.0. Moreover, we can observe that RQ values higher than 1 are results of soil–gas exchange fluxes after precipitation or higher available on O2. Thus, the FO2 can be used as an index for categorizing the source of FCO2 respiration. To finish, we can observe that the biochar can be used to sequester CO2 from the atmosphere by the absence of biological activities in a short period of time. However, we believe that more study should be developed to elucidate the CO2 and O2 sorption by biochars and their reactions (biological and/or chemical) when added biochar in soil.

Page generated in 0.0611 seconds