• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 161
  • 71
  • 39
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 334
  • 334
  • 72
  • 72
  • 67
  • 53
  • 46
  • 35
  • 35
  • 27
  • 24
  • 22
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Selective effect of diazinon on the soil microflora with reference to the control of soil-borne pathogens.

Trela, John Michael 01 January 1967 (has links) (PDF)
No description available.
62

Impact of Pseudomonas putida on nodulation in the common bean, Phaseolus vulgaris.

Grimes, Howard Dean 01 January 1982 (has links) (PDF)
No description available.
63

Interactions between Rhizobium japonicum and soybean rhizosphere organisms /

Smith, Raymond Stewart January 1972 (has links)
No description available.
64

Microbial oxidation of sulfur in soils /

Pepper, Ian L. January 1975 (has links)
No description available.
65

Microbial nitrogen transformation in humus.

Chu, Daisy Tai-Hsi. January 1968 (has links)
No description available.
66

A study of certin microorganisms of soil origin exhibiting anti-microbial properties

Graziano, Joseph Anthony. January 1952 (has links)
Call number: LD2668 .T4 1952 G71 / Master of Science
67

Investigation of the oxygen uptake of dried, remoistened soils

Funke, Berdell R. January 1961 (has links)
Call number: LD2668 .T4 1961 F87
68

Distribution and Activity of Azotobacter in the Range and Cultivated Soils of Arizona

Martin, W. P. 01 March 1940 (has links)
No description available.
69

Mycology of haymeadows under management change

Donnison, Louise January 1997 (has links)
Management improvements have caused a decline in plant species diversity in traditionally managed haymeadows. The aim of this study was examine the effects and causes of management improvements on the soil microbialocmmunity with particular emphasis on the fungal component. A seasonal study of 3 sites showed that management improvements to haymeadows consistently reduced soil microbial biomass C, but had no effect on dehydrogenase activity and basal respiration. Management improvements to these sites also caused a significant reduction in VAM spore numbers, soil fungal biomass, measured as soil ergosterol content and the PLFA 18:w6, and a decrease in the fungal:bacteria PLFA ratio. VAM spore numbers were not correlated with the possibly mycorrhizal NLFA 16:w5. In the Welsh haymeadow, fungi of the genera Fusarium, Mucor, Absidia, Cladosporium, Trichodenna, Acremonium, Zygorhynchus and Paecilomyces were commonly isolated on litter and soil. Commonly isolated fungi had proteolytic and urease activity, and approximately half had cellulose and lignin decay abilities. Management improvements induced shifts in the isolation frequency of these fungi, resulting in an increase in more general resource fungi, capable of growth on both litter and soil. Management improvements to haymeadows, may also have reduced species diversity of litter fungi. Agar and microcosm experiments established that changes in fungal community structure observed in the field could be in response to changes in plant litter inputs and applications of NPK fertiliser. Pairings of fungi on PDA showed that there was a combative hierarchy amongst the fungi, but was not able to show if this hierarchy was affected by NPK. A field experiment found no response of the soil microbial community to short term applications (2 years) of fertiliser or fungicide. The findings of this study suggest that management improvements to grasslands will induce changes in microbial and fungal community structure, this will be discussed.
70

An investigation into the degradation of biochar and its interactions with plants and soil microbial community

Olivier, Charl Francois 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Biochar (charcoal) is lauded by many scientists as an effective way to remove carbon dioxide from the atmosphere and storing it in a very stable form in the soil for hundreds to thousands of years, whilst promoting soil fertility and productivity. Considering that no significant amounts of charcoal are presently accumulating in the environment, despite considerable amounts produced globally in natural and man-made fires, this study focuses on understanding the degradation of biochar and its interactions with plants and soil organisms. The following experiments were conducted to achieve this goal. Controlled chemical oxidation of biochar, using different concentrations of hydrogen peroxide, was conducted in an attempt to mimic the enzymatic degradation of biochar by basidiomycetes. The changes occurring in biochars structure and chemistry were assessed afterwards. Furthermore, aerobic and anaerobic digestion of biochar was conducted in vitro, and in vivo to investigate the changes occurring in biochar‘s elemental composition and chemistry during oxidation and factors that play a determining role in the rate of biochar degradation. The influence of biochar in soil on free-living and symbiotic microbial communities as well as its impact on total plant biomass production and root development was assessed in three greenhouse pot trials using wheat and green beans as test plants It was proven that biochar is almost fully H2O2-degradable, mostly through hydroxylation and carboxylation reactions which led to the formation of various short chained carboxylic acids, surface saturation with acidic functional groups as determined by the surface acidity measurements and proven by the increase in the intensity of FT-IR peaks associated with carboxyl and phenolic C-O groups. Furthermore, hydrogen peroxide treatment resulted in preferential removal of volatile organic carbons and led to the purification of biochar as evident by the new, more intense and sharper peaks in the region of 1600-1000 cm-1. These FT-IR peaks are considered as the more recalcitrant fraction of biochar and were shown to be mostly associated with transformation products of lignin and cellulose formed during pyrolysis. The incubation trial confirmed that biochar cannot be utilized as a sole carbon source without the addition of nutrients or glucose, to activate microbial activity within the columns. Furthermore, abiotic oxidation can be facilitated by oxidative soil minerals such as birnessite, but oxidation with atmospheric oxygen did not result in the evolution of CO2 from biochar. The average CO2 production in pot trials without plants in both the fertilized and unfertilized treatments increased linearly (R2= 0.80; 0.79 respectively) with increasing biochar application rates when biochar was the main carbon sources. Anaerobic degradation of biochar by a methanogenic consortium was much more efficient in utilizing biochar as a carbon source, compared to aerobic digestion. The anaerobic digesters maintained a chemical oxygen demand (COD) removal efficiency of 30% per week with continuous production of CO2, whilst methane production was very erratic. We proposed that better control over pH and alkalinity as well as an increase in hydraulic retention time would improve both the COD removal efficiency and methane production. Field incubations resulted in various degrees of oxidation at different incubation sites. An increase in the oxygen content and a decreased in the carbon content of biochar‘s elemental composition and also an increase in the surface acidity due to a larger amount of carboxyl acid groups on the surface as seen in the increase in the FT-IR peak at 1700 cm-1 confirmed that biochar are susceptible to oxidation under field conditions. We came to the conclusion that oxidation and mineralization of biochar in this trial occurred at a faster rate in soils with a higher microbial activity. The pot trials, confirmed that biochar does not serve as a fertilizer even though it did increase total biomass production between biochar application rates of 0.05-2.5 % (w/w). For agricultural purposes the addition of biochar should always be applied together with NPK fertilizer. In both the wheat and green bean trials it was confirmed that biochar application rates of 0.05-0.5% (w/w) on the sandy, slightly acidic soil used in this trial resulted in the greatest biomass production and fertilizer use efficiency. Biochar additions resulted in considerable increases in soil pH and C/N ratios which were considered as the main reasons for the decrease in microbial biomass in the unfertilized green bean treatments as it made the uptake of N more limited. The addition of fertilizer however, alleviated N-supply constraints and as a result promoted microbial growth at all biochar application rates of pot trial 1. However, biochar did not promote mycorrhyzal colonization and caused a decrease in the mycorrhizal colonization of roots with increasing biochar application rates and within biochar layers. Biological nitrogen fixation, however, reacted positively to the addition of biochar. High biochar application rates significantly enhanced the plants reliance on these symbiotic relationships. We hypothesized that biochar physically immobilized N into its microvoids through capillary suction and then served as a physical barrier between plant roots and absorbed N. However, immobilzation of N by microbes could also have contributed to the decrease in N uptake if one takes into account that microbial activity was higher (respiration data) at the higher biochar application rates. Further investigations are needed to warrant this hypothesizes. / AFRIKAANSE OPSOMMING: Biochar (houtskool) is deur talle wetenskaplikes die lof toegeswaai as ‘n doeltreffende manier om koolstofdioksied uit die atmosfeer te verwyder en in ‘n baie stabiele vorm in die grond vir honderde tot duisende jare te stoor, terwyl dit die grondvrugbaarheid en produktiwiteit bevorder. As daar in ag geneem word dat geen beduidende hoeveelheid houtskool in die omgewing opgaar nie ondanks groot hoeveelhede wat wêreldwyd deur natuurlike en mensgemaakte brande gevorm word, is die doel van hierdie studie om die afbraak en die interaksie van biochar met plante en grondmikrobes beter te verstaan. Om hierdie doel te bereik is die volgende eksperimente uitgevoer: Beheerde chemiese oksidasie is op die biochar toegepas deur gebruik te maak van verskillende konsentrasies waterstofperoksied in 'n poging om die ensiematiese afbraak van biochar deur basidiomysete na te maak. Die veranderinge wat plaasvind in die struktuur en chemie van biochar is daarna bestudeer. Daarbenewens is die aerobiese and anearobiese afbraak van biochar toegepas beide in vitro- en in vivo-, om die veranderinge wat in biochar se elementele samestelling en chemie plaasvind gedurende oksidasie en ook die faktore wat 'n bepalende rol in die tempo waarteen biochar afbreek, te ondersoek. Die invloed van biochar in die grond op vrylewende en simbiotiese mikrobiese populasies, sowel as die impak daarvan op die totale plant biomassa produksie en ontwikkeling van plantwortels, is vasgestel tydens drie groeitonnel potproewe waarby koring en boontjies as planttoetsspesies gebruik is Dit is bewys dat biochar byna volledig deur H2O2 afgebreek kan word, meestal deur hidroksilasie en karboksilasie reaksies wat gelei het tot die vorming van 'n verskeidenheid kort ketting karboksielsure, 'n biochar oppervlak versadig met suurvormende funksionele groepe soos bepaal en bewys deur die toename in intensiteit van die FT-IR (Fourier Transvorm Infrarooi Spektroskopie) pieke geassosieer met karboksiel en fenoliese C-O groepe. Die behandeling van biochar met H2O2 het by voorkeur die vlugtige organise koolstof verwyder wat gelei het tot suiwering van die biochar, wat bevestig is deur die nuwe, meer intens en skerper FT-IR pieke in die area tussen 1600-1000 cm-1. Die FT-IR pieke word beskou as die meer weerstandbiedende fraksie van biochar en daar is bewys dat die pieke meestal met getransformeerde produkte van lignien en sellulose wat tydens pirolise gevorm is, geassosieer word. Die inkubasie proef het bevestig dat biochar nie deur mikrobes benut kan word as enigste bron van koolstof sonder die byvoeging van nutriente of glukose nie, om die mikrobes binne die inkubasie kolom te aktiveer. Daarbenewens kan abiotiese oksidasie van biochar deur oksidatiewe grondminerale soos birnessite (δ-MnO2) gefasiliteer word, terwyl oksidasie van biochar deur atmosferiese suurstof nie tot enige CO2 produksie gelei het nie. Nogtans het die gemiddelde CO2 produksie in die boontjie potproef, sonder die plante, in beide die onbemeste en bemeste behandelings linieer toegeneem (R2= 0.80; 0.79 onderskeidelik) met toenemende aanwendingskoers van biochar, toe biochar die dominante bron van koolstof was. Anaerobiese afbraak van biochar deur 'n metanogeniese konsortium was heelwat meer effektief in die benutting van biochar as enigste koolstofbron in vergelyking met aerobiese afbraak. Die anaerobiese verteertoestel het konstant 30% van die chemiese suurstof behoefte (CSB) weekliks verwyder, gepaardegaande met die voortdurende produksie van CO2, terwyl metaangasproduksie baie onegalig was. Dit word voorgestel dat met beter beheer oor pH en alkaliniteit en ook 'n langer hidrouliese retensie tyd, kan beide die CSB verwyderingseffektiwiteit en metaangasproduksie verbeter kan word. Veld inkubasies het verskeie mates van oksidasie meegebring tussen die verskillende inkubasie liggings. 'n Toename in die suurstofinhoud en 'n afname in die koolstof inhoud van biochar se elementele samestelling sowel as 'n toename in die oppervlak suurheid weens die groter hoeveelheid karboksielsure aan die oppervlak soos blyk uit die FT-IR piek by 1700 cm-1, het bevestig dat biochar wel vatbaar is vir oksidasie onder veld kondisies. Die gevolgtrekking was dat biochar oksidasie en mineralisasie in hierdie proef teen 'n vinniger tempo plaasgevind het in die gronde met hoer mikrobiese aktiwiteit. Die potproewe het bevestig dat biochar nie as bemestingsstof sal dien nie, alhoewel dit tot 'n toename in die biomassa produksie gelei het tussen die biochar aanwendingskoerse van 0.05-2.5% (w/w). Vir landbou doeleindes moet die aanwending van biochar altyd gepaardgaan met NPK bemesting. Beide die koring- en boontjie proewe het bevestig dat die biochar aanwendingskoerse tussen 0.05-0.5% (w/w) op die sanderig, effens suur grond wat gebruik is in die proef, gelei het tot die hoogste biomassa produksie en bemestingseffektiwiteit. Die toediening van biochar het gelei tot merkbare toenames in grond pH en C/N verhoudings en hierdie toestande was beskou as die hoof redes vir die afname in mikrobiese biomassa in die onbemeste boontjie behandelings omdat dit die opname van N meer beperk. Die toediening van bemesting het egter die beperkings op N voorsiening opgehef en as gevolg hiervan die mikrobiese biomassa bevorder by alle biochar aanwendingskoerse. Biochar het egter nie mikorrisa kolonisasie bevorder nie en het gelei tot =n afname in die mikorrisa kolonisasie van die wortels met toenemende biochar aanwendingskoerse en binne in die biochar lae van potproef 1. Biologiese stikstof vaslegging het egter positief reageer op die toediening van biochar. Hoë biochar aanwendingskoerse het beduidend die plant se afhanklikheid op hierdie simbiotiese verhouding verhoog. Ons hipotese is dat die biochar fisies N immobiliseer binne in die mikro-ruimtes deur kapillêre suigaksie en dan as 'n fisiese versperring dien tussen die plantwortels en die geabsorbeerde N. Die immobilisasie van minerale N deur mikrobes kon egter ook grootliks bygedra het tot die afname in N opname as daar in ag geneem word dat mikrobiese aktiwiteit (respirasie data) hoër was by die hoër biochar aanwendingskoerse. Verdere ondersoeke moet daarom uitgevoer word om hierdie hipotese te bevestig.

Page generated in 0.0726 seconds