• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Substrate Moisture Content Effects on Growth and Shelf Life of Angelonia angustifolia

Bingham, Alison 2012 May 1900 (has links)
Wilting during shelf life is a major cause of postharvest shrink for bedding plants shipped long distances from production greenhouses to retail outlets. The objective of this research was to determine if irrigation at lower, constant substrate moisture content (SMC) during greenhouse production would be a feasible way to acclimate plants for reduced shrinkage during shelf life, while potentially conserving irrigation water. Rooted plugs of Angelonia angustifolia 'Angelface Blue' were grown in greenhouse production until a marketable stage in substrates irrigated at SMC levels of 10, 20, 30, and 40% using a controlled irrigation system. At the end of the greenhouse production stage, plants were irrigated to container capacity and subjected to a simulated shipping environment, in shipping boxes in the dark for two days. After shipping, plants were placed back in the greenhouse and watered minimally to simulate a retail environment. Data was taken at the end of each stage i.e. greenhouse production, simulated shipping, and simulated retail. Parameters measured at the end of the production stage were fresh and senesced flower number, stem number, pre-dawn and mid-day water potential, SPAD meter readings (Experiment 2), and plant height and node number segmented into vegetative, flowering, and bud area. Plant quality was observed and rated. At the end of the simulated retail stage, the same data was taken, along with fresh and dry shoot and root weight. Results indicated that as SMC decreased from 40 to 10%, plants were shorter in height, but had proportional flowering sections (Experiment 1) or more compact flowering sections (Experiment 2). The volume of water received by the 40% SMC plants was three times greater (Experiment 1) and 12 times greater (Experiment 2) than the 20% SMC plants during greenhouse production, and two times greater (Experiment 1) and nine time greater (Experiment 2) during simulated retail. Additionally, the 40% SMC plants used 15 liters (Experiment 1) and 38 liters (Experiment 2) of water during greenhouse production compared to the 20% SMC plants using only three liters in both experiments. During simulated retail the 40% SMC plants used six liters (Experiment 1) and nine liters (Experiment 2) of water while the 20% SMC plants used five liters (Experiment 1) and three liters (Experiment 2) of water. During production, mid-day water potentials decreased as the SMC levels decreased, but at the end of the simulated retail (Experiment 1), the mid-day water potentials were all the same, suggesting plants that were drought stressed during production area were acclimated to lower water levels experienced in retail settings. Overall, the 20% SMC treatment produced the best postharvest quality plant due to reduced plant height without detrimental effects on flowering. The results demonstrate that while conserving water, controlled irrigation at a medium-low SMC can produce high quality plants that have equal shelf life to those that are irrigated at high levels.
2

Effects of Irrigation Scheduling using Soil Moisture Sensors, Irrigation Termination, and Simulated Damage on Plant Development and Yield on Cotton (Gossypium Hirsutum L.) in the Mid-South

Plumblee, Michael Thomas 04 May 2018 (has links)
Through proper irrigation scheduling and management of damaged cotton, sustainable agricultural withdrawal from the Mississippi River Valley Alluvial Aquifer can be achieved while maximizing net returns. This research was conducted to 1) develop a sensor based irrigation strategy that maximized cotton lint yield and quality, irrigation, and water use efficiency (IWUE) and 2) quantify the effects of timing of damage, intensity, and foliar N on cotton growth and development. Lint yield, fiber quality, and IWUE were optimized using a season-long irrigation threshold of -90 kPa and irrigation terminated 2-weeks before cracked boll. Regardless of cotton variety (early- or late-maturing) or timing of damage, plant height, number of nodes, and lint yield were negatively correlated with the intensity of damage. Moreover, the application of foliar nitrogen to damaged cotton had no effect on plant growth, lint yield, or fiber quality, regardless of N application timing. These data indicate that lint yield, and fiber quality are optimized when cotton varieties are selected based on yield potential, irrigated at -90 kPa threshold, and irrigations are terminated two weeks before cracked boll.
3

EstratÃgia de monitoramento e automaÃÃo em sistemas de irrigaÃÃo utilizando dispositivos de comunicaÃÃo em redes de sensores sem fio / Strategy of monitoring and automation in irrigation systems using communication devices in wireless sensor network

Tadeu Macryne Lima Cruz 30 October 2009 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho foi desenvolver estratÃgias de monitoramento e automaÃÃo em sistemas de irrigaÃÃo utilizando sensores capacitivos FDR para coletar dados do conteÃdo de Ãgua no solo atravÃs de uma Rede de Sensores Sem Fio (RSSF). Os sensores capacitivos FDR foram desenvolvidos no Departamento de Engenharia AgrÃcola (DENA) da UFC. Foram utilizados neste trabalho 14 sensores capacitivos FDR e um deles passou por um processo de calibraÃÃo em laboratÃrio, onde foi sobreposta uma lÃmpada de 100 watts na amostra de solo indeformada para acelerar o secamento do solo. Esta calibraÃÃo derivou uma equaÃÃo do tipo potencial. A RSSF utilizada à formada por mÃdulos sensores capazes de comunicar-se entre si por rÃdio frequÃncia, possuindo um ponto de comunicaÃÃo final (estaÃÃo base). O sistema de RSSF foi constituÃdo de 7 mÃdulos sensores, 2 mÃdulos multihops e um mÃdulo mestre conectado ao computador. Cada mÃdulo sensor à constituÃdo pelos seguintes elementos: transceptor TRF 2.4 GHz da Laipac (alcance mÃximo de 150 m), memÃria, processador, bateria de 12 volts e dois sensores capacitivos FDR. A RSSF foi instalada em um campo cultivado por milho em estÃdio avanÃado de produÃÃo (30 DAS). Os sensores capacitivos FDR foram instalados em duas profundidades: 10 cm e 25 cm. Os dados dos mÃdulos sensores eram transmitidos ao mÃdulo mestre atravÃs dos 2 mÃdulos multihops. As respostas dos sensores capacitivos FDR foram coletadas pelos mÃdulos sensores todos os dias, pelo perÃodo da manhà e da tarde, e o tempo de irrigaÃÃo foi determinado com base na equaÃÃo de calibraÃÃo. As leituras foram coletadas antes e depois das irrigaÃÃes e o experimento durou aproximadamente 15 dias. Foi realizada uma validaÃÃo da calibraÃÃo em campo relacionando as respostas dos sensores capacitivos FDR em tempo real com a umidade volumÃtrica pelo mÃtodo padrÃo de estufa. A RSSF possibilitou que os sensores capacitivos FDR registrassem a variaÃÃo do teor de Ãgua durante os eventos de chuva e irrigaÃÃes. As comunicaÃÃes dos mÃdulos sensores foram bem sucedidas, apesar da altura das plantas e as ocorrÃncias das chuvas terem impedido em alguns momentos as transmissÃes. A equaÃÃo obtida em laboratÃrio subestimou os valores de umidade volumÃtrica real, obtida pelo mÃtodo direto, devido à temperatura que a lÃmpada incidiu na amostra de solo durante o processo de calibraÃÃo. A bateria dos mÃdulos sensores foi o fator mais limitante e requer ajuste no protocolo de comunicaÃÃo da RSSF par otimizar o consumo. A RSSF mostrou-se um sistema dinÃmico e preciso e pode, em conjunto com os sensores capacitivos FDR, auxiliar pesquisadores e produtores na tomada de decisÃo de irrigaÃÃo. / The goal of this study was to develop strategies for monitoring and automated irrigation systems using FDR capacitance sensors to collect data of water content in the soil through Wireless Sensor Network (WSN). The FDR capacitance sensors were developed in the Department of Agricultural Engineering (DENA) pertain UFC. Were used 14 FDR capacitance sensors and one of them went through a calibration process in the laboratory, witch was superimposed a 100-watt bulb in the soil sample undeformed to accelerate the drying soil. At the end of the calibration we obtained an equation potential model. The WSN is formed sensors nodes can communicate with each other by radio frequency having a communication end point (base station). The WSN system consisted of 9 sensors modules and a master module connected to the PC. Each sensor module consists of the following elements: 2.4 GHz transceiver TRF of company Laipac (maximum range 150 m), memory, processor, 12-volt battery and two FDR capacitance sensors. The WSN was installed in a field of maize crop in an advanced stage of production (30 DAS). The FDR capacitance sensors were installed at two depths: 10 cm and 25 cm. The data from the sensor modules were transmitted to the master module through the 2 modules multihops. The responses of the FDR capacitance sensors were collected every day at the morning and afternoon, and the time of irrigation was determined based on the calibration equation. The responses of the FDR capacitance sensors obtained by WSN were collected before and after irrigation and the experiment lasted 15 days. We performed a validation of the field calibration relating the responses of the FDR capacitance sensors in real time with the water content by gravimetric method. The WSN enabled FDR capacitance sensors recorded the variation of water content during the events of rainfall and irrigation. The communications of sensors modules have been successful, despite the height of plants and occurrences of rainfall have impeded some transmissions. The equation obtained in laboratory underestimated the true values water content obtained by the direct method, due to the temperature that the light bulb emitted on the soil sample during the calibration process. The battery of the sensor modules was the most limiting factor and requires adjustment in the communication protocol of WSN to optimize consumption. The WSN was dynamic and accurate and may, in partnership with FDR capacitance sensors, help researchers and producers in decision-making irrigation.

Page generated in 0.065 seconds