• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ground deformation in the vicinity of a trench heading

Phillips, R. January 1986 (has links)
No description available.
2

The structural stability of reclaimed marsh soils

Ahmed, F. B. January 1987 (has links)
No description available.
3

Development of an integrated slope stability model for use in the tropics

Hargraves, S. V. January 1998 (has links)
No description available.
4

Shear Strength and Stability of Highway Embankments in Ohio

Han, Xiao 21 July 2010 (has links)
No description available.
5

Kvalifikace primární půdní organické hmoty podle rychlostní konstanty oxidace v lesních půdách

NĚMCOVÁ, Michaela January 2018 (has links)
The work was focused on the research of soil organic matter content and quality of selected forest soils. In the theoretical part of the thesis there were described in detail terms important to understand the given topic. In the practical part soil probes were excavated and soil samples were taken from individual horizons. The probing was carried out in two stands with a different representation of trees (forest type 0P, district Hodějov, Forest Management Třeboň, ownership of the Czech Republic, right to manage Forests of the Czech Republic, etc.). In the first case, it was a vegetation of deciduous trees (vegetation 356D12), in the second one with a vegetation of coniferous trees (356E11). In the laboratory of the Department of Agroecosystems of the Faculty of Agriculture of the University of South Bohemia in České Budějovice soil samples were modified and further examined in terms of the quantity and quality of soil organic matter. A new method, proposed by the collections of authors Kopecký, Kolář, Borová-Batt (2016), was used to compare the quality of the primary soil organic matter in individual samples by determining the velocity constant of the oxidation of the primary soil organic matter. The humus content was then determined and the degree of humification was calculated. The results show that the monitored parameters differ considerably in individual soil horizons. Significant differences were also observed when comparing soils of coniferous and deciduous stands. A considerable difference can be seen, for example, in the organic carbon content at the top horizons. For example, at the Ahe horizon, the total organic carbon content was found to be 39.71 % for coniferous soil, while in the leafy soil the carbon content at the same horizon was only 7.06 %. The highest value of the velocity constant to oxidation of the primary soil organic matter, which indicates its highest quality, was recorded at the Ep horizon (9-20 cm depth) of the deciduous soil probe.
6

Influence of microphytic crusts on selected soil physical and hydrologic properties in the Hartnet Draw, Capitol Reef National Park, Utah.

Williams, John Dana 01 May 1993 (has links)
Microphytic crust influences on selected physical and hydrologic soil properties were examined at one location in Capitol Reef National Park, Utah. Designed experiments were conducted in a sandy loam soil where microphytic crusts were present without the concomitant development of confounding physical or chemical soil conditions. Three treatments were used for all experiments: control, chemically killed (microphytes killed but left in place), and scalped (microphytic crusts mechanically removed). A portable wind tunnel was used to deter-nine if microphytic crusts contribute to soil stability and reduce the erosive effect of wind. Significantly lower threshold friction velocity and greater wind-entrained material were recorded in the scalped treatment than in the control or chemically killed treatments. These results are evidence that microphytic crusts significantly contribute to reducing the erosive force of wind at this site. A dripper system was used in situ to determine if microphytic crusts influence effective saturated hydraulic conductivity. There were no significant differences among treatments. This result is evidence that microphytic crusts have a minimal influence, if any, on effective saturated hydraulic conductivity at this site. Rainfall simulation was used to determine if microphytic crusts influence hydrologic properties of time to ponding, time to runoff, and infiltration capacity. Rainfall was simulated for 90 minutes after runoff began. Simulated rainfall also was used to determine if microphytic crusts influence interrill erosion. Time to ponding and time to runoff were significantly shorter in the control and chemically killed treatments than in the scalped treatment. However, infiltration capacity was not significantly different among treatments during any five-minute period within the 90 minutes that runoff occurred. Microphytic crusts apparently reduce initial entry of water into the soil profile; however, once infiltration has begun, they do not inhibit or enhance infiltration capacity at this site. Interrill erosion was nearly constant from the control treatment throughout simulated rainfall events. Significantly greater interrill erosion occurred in the chemically killed treatment compared to control and scalped treatments. Interrill erosion in the scalped treatment was significantly greater than in the control treatment after 30 minutes and through 90 minutes. These results are evidence that microphytic crusts, when composed of living, undisturbed microphytes, resist the erosive effect of rainfall and contribute to the soil stability of this site.
7

Measuring and Understanding Effects of Prescribed Fire in a Headwater Catchment

Erwin, Elizabeth G. 11 July 2019 (has links)
Headwater catchments play a large role in the storage and release of water and chemical constituents, thereby influencing downstream flows and water quality. Recent advances in water quality monitoring technologies have created an opportunity to better assess water chemistry variation by using high temporal resolution, in situ sensors. However, despite these new technologies, there have been limited studies on installation approaches and their effects on sensor measurements. Accurate in situ monitoring is particularly important to capture catchment disturbance effects that may be highly dynamic over time (e.g., following storms) or limited in duration. For example, prescribed fire is a commonly applied forest management tool, but there remain questions regarding how this disturbance affects catchment soils and resultant stream water chemistry. Effective assessment of prescribed fire thus requires coupled monitoring of both soil properties and water chemistry. In this thesis, I addressed two linked objectives: i) assess the effects of commonly used protective housings on in situ sensor measurements (Chapter 2) and ii) evaluate prescribed burn effects in a southwestern Virginia, USA headwater catchment (Chapter 3). In Chapter 2, I compared four different housing types (mesh, screen, holes, and open) using in situ specific conductance measurements over time and from salt tracer injections for discharge estimates. This study demonstrated substantial effects from some of the housing types evaluated, where flow resistance reduced water exchange between stream water and water in contact with the sensor. From these findings, I suggest that in situ water quality sensors should be deployed in housing types with large openings perpendicular to flow. In Chapter 3, I assessed prescribed fire effects on soil properties (particle size, aggregate stability, and chemistry), stream discharge, and fine-scale water chemistry dynamics. Findings demonstrated some significant differences following fire in soil properties (e.g., overall decrease in aggregate stability, general decreases in total carbon and nitrogen of mineral soils), water quality (e.g., increased levels of DOC, turbidity, and nitrate) and discharge (increases in stage and flow). While these changes were statistically significant, differences in parameters before and after fire were generally small. Future work should examine if these effects persist through time, and whether the minor level of disturbance observed in this study results in any negative environmental impacts. / Master of Science / Headwater catchments (where precipitation first becomes streamflow) provide important aquatic habitat and regulate downstream water flows and chemistry. Recent advances in water quality monitoring technologies have created an opportunity to better assess water chemistry variability by using high frequency, submerged water quality sensors. However, these new technologies present new, unique challenges, such as measurement errors that may be induced by different installation methodologies. Accurate measurements are particularly important to evaluate how changes in catchment conditions (e.g., soils, vegetation) impact local and downstream water quality. For example, prescribed fire is a commonly used forest management tool, but questions remain about how it affects catchment soils and headwater stream chemistry. Consequently, understanding the effects of this and other catchment disturbances requires coupled monitoring of both soil properties and water quality. In this thesis, I addressed two objectives: i) assess the effects of commonly used protective housings on water quality sensor measurements (Chapter 2) and ii) evaluate prescribed burn effects in a southwestern Virginia, USA headwater catchment (Chapter 3). In Chapter 2, I demonstrated substantial effects from some of the housings evaluated and suggest that water quality sensors should be deployed in housing types with large openings perpendicular to flow. In Chapter 3, I demonstrated some significant effects of prescribed fire on soil properties (e.g. overall decrease in soil stability, general decreases in total carbon and nitrogen of mineral soils), water quality (e.g., increased levels of dissolved organic matter, turbidity, and nitrate) and flow (increases in stream water levels and flow). While these changes were statistically significant, differences in parameters before and after fire were generally small. Future work should examine if these effects persist through time, and whether this minor level of disturbance causes any negative environmental impacts.
8

Stabilised Rammed Earth For Walls : Materials, Compressive Strength And Elastic Properties

Kumar, Prasanna P 07 1900 (has links)
Rammed earth is a technique of forming in-situ structural wall elements using rigid formwork. Advantages of rammed earth walls include flexibility in plan form, scope for adjusting strength and wall thickness, variety of textural finishes, lower embodied carbon and energy, etc. There is a growing interest in the construction of rammed earth buildings in the recent past. Well focused comprehensive studies in understanding the structural performance of rammed earth structures are scanty. Clear-cut guidelines on selecting soil grading and soil characteristics, assessing strength of rammed earth walls, density strength relationships, limits on shrinkage, standardised testing procedures, behaviour of rammed earth walls under in-plane and out of plane loads, etc are the areas needing attention. The thesis attempts to address some of these aspects of cement stabilized rammed earth for structural walls. Brief history and developments in rammed earth construction with illustrations of rammed earth buildings are presented. A review of the literature on rammed earth has been provided under two categories: (a) Unstabilised or pure rammed earth and (b) stabilised rammed earth. Review of the existing codes of practice on rammed earth has also been included. Summary of the literature on rammed earth along with points requiring attention for further R&D are discussed. Objectives and scope of the thesis are listed. The thesis deals with an extensive experimentation on cement stabilised rammed earth (CSRE) specimens and walls. Four varieties of specimens (cylindrical, prisms, wallettes and full scale walls) were used in the experiments. A natural soil and its reconstituted variants were used in the experimental work. Details of the experimental programme, characteristics of raw materials used in the experimental investigations, methods of preparing different types of specimens and their testing procedures are discussed in detail. Influence of soil grading, cement content, moulding water content, density and delayed compaction on compaction characteristics and strength of cement stabilised soil mixes were examined. Five different soil gradings with clay content ranging between 9 and 31.6% and three cement contents (5%, 8% and 12%) were considered. Effect of delayed compaction (time lag) on compaction characteristics and compressive strength of cement stabilised soils was examined by monitoring the results up to 10 hours of time lag. Influence of moulding water content and density on compressive strength and water absorption of cement stabilised soils was examined considering for a range of densities and water contents. The results indicate that (a) there is a considerable difference between dry and wet compressive strength of CSRE prisms, and the strength decreases as the moisture content at the time of testing increases, (b) wet strength is less than that of dry strength and the ratio between wet to dry strength depends upon the clay fraction of soil mix and cement content, (c) saturated moisture content depends upon the cement content and the clay content of the soil mix, (d) optimum clay percentage yielding maximum compressive strength is about 16%, (e) compressive strength of compacted cement stabilised soil increases with increase in density irrespective of cement content and moulding moisture content, and the strength increases by 300% for 20% increase in density from 15.70 kN/m3, (f) compressive strength of rammed earth is one - third higher than that of rammed earth brick masonry and (g) density decreases with increase in time lag and there is 50% decrease in strength with 10 hour time lag. Stress-strain relationships and elastic properties of cement stabilised rammed earth are essential for the analysis of CSRE structural elements and understanding the structural behaviour of CSRE walls. Influence of soil composition, density, cement content and moisture on stress-strain relationships of CSRE was studied. Three different densities (15.7 – 19.62 kN/m3) and three cement percentages (5%, 8% and 12% by weight) were considered for CSRE. Stress-strain characteristics of CSRE and rammed earth brick masonry were compared. The results reveal that (a) in dry condition the post peak response shows considerable deformation (strain hardening type behaviour) beyond the peak stress and ultimate strain values at failure (dry state) are as high as 3.5%, which is unusual for brittle materials, (b) modulus for CSRE increases with increase in density as well as cement content and there is 1 to 3 times increase as the cement content changes from 5% to 12%. Similarly the modulus increases by 2.5 to 5 times as the dry density increases from 15.7 to 19.62 kN/m3 and (c) the modulus of CSRE and masonry in dry state are nearly equal, whereas in wet state masonry has 20% less modulus. Compressive strength and behavior of storey height CSRE walls subjected to concentric compression was studied. The results of the wall strength were compared with those of wallette and prism strengths. The wall strength decreases with increase in slenderness ratio. There is nearly 30% reduction in strength as the height to thickness ratio increases from 4.65 to 19.74. It was attempted to calculate the ultimate compressive strength of CSRE walls using the tangent modulus theory. At higher slenderness ratios, there is a close agreement between the experimental and predicted values. The storey height walls show lateral deflections as the load approaches failure. The walls did not show visible buckling and the shear failure patterns indicate material failure. The shear failures noticed in the storey height walls resemble the shear failures of short height wallette specimens. The thesis ends with a summary of the results with concluding remarks in the last chapter.

Page generated in 0.0883 seconds