1 |
TECHNIQUE FOR DETERMINING THE POWER FLUX DENSITY OF INTERFERING SIGNALS AT TELEMETRY RECEIVING STATIONSLaw, Eugene 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper will present techniques for accurately measuring the power flux density (PFD) of
interfering signals at telemetry receiving stations. The solar power flux density is measured
daily by radio astronomers and will be used as a calibration signal. The electromagnetic
spectrum is being used more intensely as time marches on so being familiar with interference
measurement techniques is becoming more important because more interfering signals are
present.
|
2 |
Estudo da variação na altitude de máxima ocorrência de meteoros e a sua relação com o ciclo solarSouza, Sebastião Nascimento de 29 May 2015 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2016-03-03T17:22:59Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
PDF - Sebastião Nascimento de Souza.pdf: 2316347 bytes, checksum: 7e719d9c14cbff4227a3c49a84dc164f (MD5) / Made available in DSpace on 2016-03-03T17:22:59Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
PDF - Sebastião Nascimento de Souza.pdf: 2316347 bytes, checksum: 7e719d9c14cbff4227a3c49a84dc164f (MD5)
Previous issue date: 2015-05-29 / In this paper, data from the heights of maximum occurrence of meteor echoes were used
to investigate a possible relationship between variations in the height of meteors and
solar flux at low latitudes during the solar cycle 23. The heights of meteors were
obtained from measurements by SKiYMET meteor radar system at Cachoeira Paulista
(22.7 ° S, 45.0 ° W). The data used include measurements taken from March 1999 to
July 2006 and from September 2007 to October 2008. The echo of the reach and the
zenith angle with respect to each radar echo are used for the heights of occurrence of
meteors. The maximum height of daily occurrence was obtained from the Gaussian
distribution through vertical adjustment. The series of height data of peak occurrence of
meteors was subjected to multiple linear regression analysis to investigate the trend and
possible variations induced by solar activity. The results showed a downward trend of
approximately 68 m / year at the time of maximum occurrence of meteor and 447 m /
100sfu using monthly data after removal of the solar effect, resulting in a decrease in the
peak height of approximately 248 m for all observation period after the time trend
removal. Considering only the period of decline of the solar cycle (2002-2008) the
decline was approximately 1054 m using monthly data in the analysis. The decrease of
the meteors occurrence height can be attributed, in part, the effects of solar activity.
Knowing that the atmosphere expands with the growth of solar activity the neutral
density shows a downward trend over time. / Neste trabalho, dados das alturas de máxima ocorrência de ecos meteóricos foram
usados para investigar uma possível relação entre as variações na altura dos meteoros e
fluxo solar em baixas latitudes, durante o ciclo solar 23. As alturas dos meteoros foram
obtidos a partir das medidas por radar meteórico SKiYMET em Cachoeira Paulista
(22,7°S, 45,0°O). Os dados utilizados incluem as medidas realizadas de março de 1999
a julho de 2006 e de setembro de 2007 a outubro de 2008. O alcance do eco e o ângulo
zenital referente a cada eco do radar são usados para obter as alturas de ocorrência dos
meteoros. A altura de máxima ocorrência diária foi obtida a partir da distribuição
vertical através de ajuste Gaussiano. A série de dados da altura do pico de ocorrência de
meteoros foi submetida a análise de regressão linear múltipla para investigar a tendência
e possíveis variações induzidas pela atividade solar. Os resultados indicam uma
tendência de queda de aproximadamente 68 m/ano na altura de ocorrência máxima dos
meteoros e de 447 m/100sfu utilizando os dados mensais após remoção do efeito solar,
acarretando numa diminuição da altura do pico de aproximadamente 248 m para todo o
período observado após remoção da tendência do tempo. Considerando apenas o
período de declínio do ciclo solar (de 2002 a 2008) a queda foi de aproximadamente
1054 m utilizando nas análises os dados mensais. O decréscimo da altura de ocorrência
dos meteoros pode ser atribuído, em parte, a efeitos da atividade solar. Sabendo que a
atmosfera se expande com o crescimento da atividade solar a densidade neutra apresenta
uma tendência decrescente ao longo do tempo.
|
3 |
Delayed Ionospheric Response to Solar EUV/UV Radiation VariationsVaishnav, Rajesh Ishwardas 24 November 2021 (has links)
The variability of the thermosphere-ionosphere (T-I) system and its complex behavior is strongly dependent on the continuously changing solar extreme ultraviolet (EUV) and ultraviolet (UV) radiation. The ionospheric electron density (or ion density) is mainly controlled by photoionization, loss by recombination, and transport processes. Transport processes play a significant role in the T-I composition and are responsible for the plasma distribution.
The ionospheric response to solar activity has been investigated using total electron content (TEC) and solar EUV observations, as well as various solar proxies. An ionospheric delay of about 1-2 days in the daily TEC on the time scale of 27 days solar rotation period has been reported. It has also been shown that the He-II index is one of the best solar proxies to represent the solar activity at different time scales.
The ionospheric delay in relation to solar radiation variations has attracted less attention in the past, especially with respect to its possible mechanisms. However, such studies, are of great importance for a better understanding of the complex interactions between solar radiation and the ionosphere that affect radio communications and navigation systems such as GNSS. Since the T-I region is affected not only by solar radiation, but also by lower atmospheric forcings, geomagnetic activity, and space weather events. Therefore, numerical modeling provides an opportunity to interpret the possible physical mechanism.
To shed more light on this issue, a global, 3-D, time-dependent, physics-based numerical model was used in this thesis. It is a comprehensive numerical study to investigate the ionospheric response to solar flux changes during the 27 days solar rotation period. Satellite observations were used for comparison with the model simulations. The average delay for the observed (modeled) TEC is about 17 (16) h againest high-resolution solar EUV flux. The study confirms the capabilities of the model to reproduce the delayed ionospheric response with daily and hourly resolution. These results are in close agreement with previous studies.
For the first time, the model simulations were performed to understand the role of eddy diffusion. The study shows that eddy diffusion is an important factor affecting the ionospheric delay and highlights the influence of the lower atmospheric forcing. Eddy diffusion was found to cause a change in thermospheric composition, which induces changes in atomic oxygen by modifying loss and photoionization rates. Atomic oxygen contributes significantly to ionization. Enhanced eddy diffusion leads to a decrease in atomic oxygen ion density and consequently TEC. Therefore, TEC decreases due to enhanced eddy diffusion, showing that the ionospheric delay is reduced. Thus, slow transport leads to maximum ionospheric delay.:Bibliographische Beschreibung
Bibliographic Description
Acronyms
1 General introduction
1.1 Introduction: Ionospheric delayed response
1.2 Objectives and structure of the thesis
1.3 Model description and data
1.3.1 CTIPe model description
1.3.2 Data
2 Paper 1: Ionospheric delayed response: preliminary results
Vaishnav, R., Jacobi, C., Berdermann, J., Schmölter, E., and Codrescu, M.:
Ionospheric response to solar EUV variations: Preliminary results
3 Paper 2: Long term trends of ionospheric response to solar EUV variations
Vaishnav, R., Jacobi, C., and Berdermann, J.: Long-term trends in the iono-
spheric response to solar extreme-ultraviolet variations
4 Paper 3: Comparison between CTIPe model simulations and satellite
measurements
Vaishnav, R., Schmölter, E., Jacobi, C., Berdermann, J., and Codrescu, M.:
Ionospheric response to solar extreme ultraviolet radiation variations: com-
parison based on CTIPe model simulations and satellite measurements
5 Paper 4: Role of eddy diffusion in the ionospheric delayed response
Vaishnav, R., Jacobi, C., Berdermann, J., Codrescu, M., and Schmölter, E.:
Role of eddy diffusion in the delayed ionospheric response to solar flux
changes
6 Conclusions
7 Outlook
References
Acknowledgements
Curriculum Vitae
Affirmation / Die Veränderungen des Thermosphäre-Ionosphäre (T-I) Systems und dessen Komplexität werden entscheidend durch die sich ständig ändernde extreme ultraviolette (EUV) und ultraviolette (UV) Sonnenstrahlung geprägt. Hierbei wird die ionosphärische Elektronendichte (oder Ionendichte) hauptsächlich durch Photoionisation, Rekombination und Transportprozesse gesteuert. Insbesondere Transportprozesse spielen eine wichtige Rolle für die Zusammensetzung des T-I-Systems und sind für die Plasmaverteilung verantwortlich.
Die ionosphärische Reaktion auf Veränderungen der Sonnenaktivität wurde mithilfe des Gesamtelektronengehalts (englisch total electron content, TEC) und Messdaten des solaren EUV-Spektrums sowie solaren Proxys untersucht. Eine ionosphärische Verzögerung von 1 bis 2 Tagen für Tageswerte von TEC wurde für die 27-Tage-Sonnenrotation gefunden. Es wurde auch gezeigt, dass der He-II-Index einer der besten solaren Proxys ist, um die Sonnenaktivität auf verschiedenen Zeitskalen zu beschreiben.
Die ionosphärische Verzögerung in Bezug auf Variationen der Sonnenstrahlung wurde in der Vergangenheit wenig Aufmerksamkeit gewidmet. Insbesondere die zugrundenliegenden Mechanismen wurden nicht untersucht. Solche Studien sind jedoch von entscheidender Bedeutung für ein besseres Verständnis der komplexen Wechselwirkungen zwischen Sonnenstrahlung und Ionosphäre, die unteranderem die Leistung von Radiokommunikation und globalen Navigationssystemen beeinflussen. Das T-I-System wird jedoch nicht nur von der solaren EUV-Strahlung kontrolliert. Prozesse der unteren Atmosphäre, geomagnetische Aktivität und Weltraumwettereignisse haben ebenfalls einen Einfluss auf diese Region. Daher bietet sich numerische Modellierung als Möglichkeit für die Interpretation der physikalischen Prozesse an.
Zur Klärung der offenen Fragen wurde in dieser Arbeit ein globales, dreidimensionales, zeitabhängiges physikalisches Modell verwendet und eine umfangreiche Studie der ionosphärischen Reaktion auf Veränderungen der Sonnenstrahlungen während der 27-Tage-Sonnenrotation wurde durchgeführt. Hierfür wurden Messdaten von Satellitenmissionen mit den Modellsimulationen verglichen. Im Mittel ergibt sich eine Verzögerung von 16 Stunden aus der Analyse der Messdaten und eine Verzögerung von 17 Stunden aus den Modellsimulationen. Die Studie bestätigt demnach die Fähigkeit des Modells, die verzögerte ionosphärische Reaktion in stündlicher und täglicher Auflösung zu simulieren. Diese Ergebnisse stimmen gut mit vorangegangenen Studien überein.
Im Rahmen dieser Arbeit wurden zum ersten Mal Simulationen zum Einfluss der Eddy-Diffusion durchgeführt. Diese Analyse zeigt, dass die Eddy-Diffusion ein wichtiger Faktor für die Ausprägung der ionosphärischen Verzögerung ist und dass der Einfluss von Prozessen der unteren Atmosphäre eine entscheidende Rolle spielt. Es wurde festgestellt, dass die Eddy-Diffusion eine erhebliche Veränderung der thermosphärischen Zusammensetzung verursacht, was wiederum zu Veränderung der Menge des atomaren Sauerstoffs führt. Dies beeinflusst dann die Ionisations- und Verlustrate. Da der atomare Sauerstoff erheblich zur Ionisierung beiträgt. Zunehmender Eddy-Diffusion folgen damit auch verkleinert der atomarer Sauerstoff Ionendichte und TEC. Daher nimmt TEC mit zunehmender Eddy-Diffusion ab und auch die Verzögerung wird kleiner. Andersherum führt ein langsamer Transport zu einem Maximum der ionosphärischen Verzögerung.
Diese Dissertation gibt eine umfangreiche Zusammenfassung für das Verständnis der ionosphärischen Verzögerung zu Variationen der solaren EUV-Strahlung. Dafür werden TEC-Messungen mit numerischen Simulationen kombiniert. Weiterhin werden durch Vergleich die besten solaren Proxys für die Beschreibung der solaren Aktivität in T-I-Modellen bestimmt. Dies ist von entscheidender Bedeutung, um den Fokus auf die Verbesserung dieser Modelle zu lenken.:Bibliographische Beschreibung
Bibliographic Description
Acronyms
1 General introduction
1.1 Introduction: Ionospheric delayed response
1.2 Objectives and structure of the thesis
1.3 Model description and data
1.3.1 CTIPe model description
1.3.2 Data
2 Paper 1: Ionospheric delayed response: preliminary results
Vaishnav, R., Jacobi, C., Berdermann, J., Schmölter, E., and Codrescu, M.:
Ionospheric response to solar EUV variations: Preliminary results
3 Paper 2: Long term trends of ionospheric response to solar EUV variations
Vaishnav, R., Jacobi, C., and Berdermann, J.: Long-term trends in the iono-
spheric response to solar extreme-ultraviolet variations
4 Paper 3: Comparison between CTIPe model simulations and satellite
measurements
Vaishnav, R., Schmölter, E., Jacobi, C., Berdermann, J., and Codrescu, M.:
Ionospheric response to solar extreme ultraviolet radiation variations: com-
parison based on CTIPe model simulations and satellite measurements
5 Paper 4: Role of eddy diffusion in the ionospheric delayed response
Vaishnav, R., Jacobi, C., Berdermann, J., Codrescu, M., and Schmölter, E.:
Role of eddy diffusion in the delayed ionospheric response to solar flux
changes
6 Conclusions
7 Outlook
References
Acknowledgements
Curriculum Vitae
Affirmation
|
4 |
Evaluation d’une filière technologique de cellules photovoltaïques multi-jonctions à base de matériaux antimoniures (III-V)-Sb pour applications aux très fortes concentrations solaires / Evaluation of a technological process of photovoltaic cells multi-junction based antimonide materials (III-V)-Sb for use under highly concentrated solar fluxGiudicelli, Emmanuel 20 June 2016 (has links)
La conversion photovoltaïque (PV) de l’énergie solaire repose sur la capacité qu’ont certains matériaux à convertir l’énergie des photons en courant électrique. Le développement des systèmes de conversion PV ces trente dernières années a permis des améliorations considérables en terme de coût et de performances dans le domaine des énergies renouvelables.Une cellule multi-jonctions (MJ), à base de matériaux semi-conducteurs III-V, est un empilement de sous-cellules aux gaps décroissants qui permet notamment une plus large utilisation du spectre solaire. Soumettre ces cellules PV à un flux solaire concentré permet d’augmenter significativement la puissance électrique créée par celles-ci, et ainsi d’abaisser substantiellement le coût de l’électricité produite.Le record du monde est actuellement détenu par le partenariat Soitec / Fraunhofer ISE avec un rendement de 46,0 % mesuré sur une cellule quadruple-jonctions en GaInP/GaAs//InGaAsP/InGaAs pour un taux de concentration de 508 X (où 1 X =1 soleil = 1 kW/m²).L’objectif du travail réalisé dans le cadre de cette thèse est de proposer une alternative aux cellules existantes plus simple à mettre en œuvre avec des cellules MJ monolithiques accordées sur substrat de GaSb pour des concentrations solaire de 1 000, soit une irradiance directe de 1 MW/m². Ce type de cellules, du fait de la très bonne complémentarité des gaps des matériaux et ses alignements de bandes favorables, constitue une alternative crédible et originale aux cellules existantes pour une utilisation sous flux solaire fortement concentré.Afin de mieux comprendre la cellule multijonctions III-Sb optimale, les travaux réalisés ont porté sur la fabrication et la caractérisation des trois sous-cellules fabriquées indépendamment. Ces trois échantillons épitaxiés sont l’Al0,9Ga0,1As0,07Sb0,93 (cellule Top), l’Al0,35Ga0,65As0,03Sb0,97 (cellule Middle) et le GaSb (cellule Bottom) ayant comme gaps respectifs 1,6 eV, 1,22 eV et 0,726 eV à 300 K.Le travail présenté dans cette thèse porte sur :- La réalisation et la mise au point de toutes les étapes technologiques nécessaires à la fabrication des cellules (dépôts métalliques, gravure humide et sèche par plasma …).- La caractérisation des métallisations par structure TLM (Transmission Line Method) dont le meilleur résultat obtenu concerne une métallisation tri-couche Cr/Pd/Au (30/30/30 nm) sur substrat GaSb type P.- La caractérisation sous obscurité courant-tension des paramètres électriques des cellules PV à température ambiante et en fonction de la température.- La caractérisation thermique par mesure de la conductivité thermique des matériaux et une cartographie de température de surface en fonction du flux solaire concentré en conditions réelles.- La caractérisation électro-optique par réponse spectrale, à partir de laquelle nous avons calculé le rendement quantique externe qui représente le rapport entre la quantité d’électrons créés et la quantité de photons incidente.- La caractérisation sous illumination à 1 soleil (1 000 W/m²) sous simulateur solaire et en conditions solaire dont nous avons comparé les paramètres électriques.- La caractérisation des cellules sous flux solaire (fortement) concentré au laboratoire PROMES. Les meilleurs rendements obtenus pour les cellules PV Bottom, Middle et Top respectifs de 4,6 % à 40 X (proche de l’état de l’art), 8,2 % à 96 X et 5,4 % à 185 X (première mondiale pour ces matériaux quaternaires).Ce travail a été cofinancé par le Ministère de l’Education et de la Recherche (Allocation ED) et le Labex SOLSTICE.Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies. / Photovoltaic (PV) solar energy consists on the ability of certain materials to convert the photon energy into electric current. The development of PV conversion systems in the past thirty years has led to considerable improvements in terms of cost and performance in the field of renewable energies.A multi-junction (MJ) cell, based on III-V semiconductor materials, is a stack of sub-cells with decreasing gaps which notably allows wider use of the solar spectrum. Exposing these PV cells to a concentrated solar flux can significantly increase the electrical power generated, and therefore substantially lower the cost of electricity yielded.The world record is currently held by the partnership Soitec / Fraunhofer ISE with an efficiency of 46.0 % measured on a four-junction cell GaInP/GaAs//InGaAsP/InGaAs for a concentration ratio of 508 X (where 1 X = 1 sun = 1 kW/m²).The objective of the work in this thesis is to propose an alternative to existing cells, easier to implement with monolithic MJ cells grown on a GaSb substrate for solar concentrations of 1 000, which corresponds to a direct irradiance of 1 MW/m². This type of cell, due to the good complementary of the material gaps and its favorable band alignments, is a realistic and original alternative to existing cells for use under highly concentrated solar flux.To better understand the optimal multijunction III-Sb cell, the work carried out consisted on the manufacturing and characterization of the three sub-cells independently.These three epitaxial samples are Al0,9Ga0,1As0,07Sb0,93 (Top cell), the Al0,35Ga0,65As0,03Sb0,97 (Middle cell) and GaSb (Bottom cell) having as respective gaps 1.6 eV, 1.22 eV and 0.726 eV at 300 K.The work presented in this thesis is:- The establishment of all the technological steps required to manufacture the cells (metal deposition, wet and dry plasma etching ...).- The characterization of metallization by TLM structure (Transmission Line Method) with the best result being a three-layer metallization Cr/Pd/Au (30/30/30 nm) on a GaSb P-type substrate.- The characterization under dark of current-voltage electrical parameters of PV cells at room temperature and in function of the temperature.- The thermal characterization by measuring the thermal conductivity of the materials and a surface temperature mapping in function of the concentrated solar flux in realistic conditions.- The electro-optical characterization by spectral response, from which we calculated the external quantum efficiency which is the ratio between the amount of electrons created and the amount of incident photons.- The characterization under 1 sun illumination (1 000 W/m²) in a solar simulator and in realistic conditions of which we compared the electrical parameters.- The characterization of solar cells under (highly) concentrated solar flux in the PROMES laboratory.The best efficiencies for Bottom, Middle and Top PV cells respectively are 4.6 % for 40 X (close to the state of the art), 8.2 % for 96 X and 5.4 % for 185 X (world first for these quaternary materials).This work was cofounded by the Ministry of Education and Research (ED Research grant) and Labex SOLSTICE.
|
Page generated in 0.072 seconds