• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of High Performance Electrodes for High Temperature Solid Oxide Electrolysis Cells / 高温固体酸化物電解セルにおける高性能電極の開発

Vandana, Singh 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19730号 / 工博第4185号 / 新制||工||1645(附属図書館) / 32766 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 江口 浩一, 教授 安部 武志, 教授 陰山 洋 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
2

Development of a double-layered perovskite as alternative anode material for high temperature steam electrolysis

Qadri, Syed N. January 2014 (has links)
The research presented is based on alternative anode materials for high temperature steam electrolysis. The key to commercially viable renewable energy economy is based on energy storage of intermittent sources. Hydrogen is the preferred form of energy storage for solid oxide electrolysis cells. However, conventional anode material lanthanum strontium manganite (LSM), suffers from poor ionic conductivity, thus prohibiting much of the bulk electrode from providing an enhanced electrochemical performance. This study explores the use of a double-layered perovskite system with mixed electronic and ionic conductivity for use as anode material. Specifically, the SmBa₁₋ₓSrₓCo₂O[sub](5+δ) system (SBSCO) is analyzed for characteristics that may enhance the performance and feasibility of SBSCO as an alternative anode material to LSM. Previous in-house work showed SmBa₀.₅Sr₀.₅Co₂O[sub](5+δ) had the lowest area specific resistance of any double- layered material reported. Here the system is further explored by studying the full range of compositions. From X-ray diffraction analysis, increased Sr substitution leads to a tetragonal phase change in SBSCO. High temperature x-ray diffraction of compositions showed thermal stability of structure. Magnetization measurements are reported for selected compositions. The stability of SBSCO was examined in CO₂ containing atmospheres. Despite containing alkaline earth metals, the system offers limited CO₂ tolerance. A set of thermodynamic parameters is presented based on CO₂ partial pressure and temperature. Model indicates SBSCO is a stable electrode material for both electrolysis and fuel cell modes. Compositions were tested for steam electrolysis performance with the use of YSZ electrolyte, and Ni-YSZ and La₀.₄Sr₀.₄Ni₀.₀₆Ti₀.₉₄O₂.₉₄ cathodes. SmBa₀.₃Sr₀.₇Co₂O[sub](5+δ) had the highest performance for compositions (0≤x≤1) based on I-V curves and impedance measurements. Stability tests were conducted in potentiostatic mode and no delamination was observed for SBSCO in microstructural analysis after testing. From these studies, SBSCO is demonstrated to be a suitable for application in electrolysis and an alternative for LSM as anode material.
3

Development of Cathode Catalysts for the Production of Synthesis Gas and Ammonia in Solid Oxide Electrolysis Cells

Deka, Dhruba Jyoti January 2020 (has links)
No description available.
4

The development of alternative cathodes for high temperature solid oxide electrolysis cells

Yue, Xiangling January 2013 (has links)
This study mainly explores the development of alternative cathode materials for the electrochemical reduction of CO₂ by high temperature solid oxide electrolysis cells (HTSOECs), which operate in the reverse manner of solid oxide fuel cells (SOFCs). The conventional Ni-yttria stabilized zirconia (YSZ) cermets cathode suffered from coke formation, whereas the perovskite-type (La, Sr)(Cr, Mn)O₃ (LSCM) oxide material displayed excellent carbon resistance. Initial CO₂ electrolysis performance tests from different cathode materials prepared by screen-printing showed that LSCM based cathode performed poorer than Ni-YSZ cermets, due to non-optimized microstructure. Efforts were made on microstructure modification of LSCM based cathodes by means of various fabrication methods. Among the LSCM/YSZ graded cathode, extra catalyst (including Pd, Ni, CeO₂, and Pt) aided LSCM/GDC (Gd₀.₁Ce₀.₉O₁.₉₅) cathode, LSCM impregnated YSZ cathode, and GDC impregnated LSCM cathode, the GDC impregnated LSCM cathode, with porous LSCM as backbone for finely dispersed GDC nanoparticles, was found to possess the desired microstructure for CO₂ splitting reaction via SOEC. Incorporating of 0.5wt% Pd into GDC impregnated LSCM cathode gave rise to an Rp of 0.24 Ω cm² at open circuit voltage (OCV) at 900°C in CO₂-CO 70-30 mixture, comparable with the Ni/YSZ cermet cathode operated in the identical conditions. Meanwhile, the cathode kinetics and possible mechanisms of the electrochemical reduction of CO₂ were studied, and factors including CO₂/CO composition, operation temperature and potential were taken into account. The current-to-chemical efficiency of CO₂ electrolysis was evaluated with gas chromatography (GC). The high performance Pd and GDC co-impregnated LSCM cathode was also applied for CO₂ electrolysis without protective CO gas in feed. This cathode also displayed superb performance towards CO₂ electrochemical reduction under SOEC operation condition in CO₂/N₂ mixtures, though it had OCV as low as 0.12V at 900°C. The LSCM/GDC set of SOEC cathode materials were investigated in the application of steam electrolysis and H₂O-CO₂ co-electrolysis as well. For the former, adequate supply of steam was essential to avoid the appearance of S-shaped I-V curves and limited steam transport. The 0.5wt% Pd and GDC co-infiltrated LSCM material has been found to be a versatile cathode with high performance and good durability in SOEC operations.
5

Conception et conduite de systèmes d’électrolyse à haute température alimentés par des énergies renouvelables / Design and control of high temperature electrolyser systems fed with renewable energies

Petipas, Floriane 17 May 2013 (has links)
Le « Power-to-Gas » pourrait devenir une solution attractive pour le stockage des énergies renouvelables, pourvu que des électrolyseurs soient capables de fonctionner efficacement dans des conditions intermittentes à un coût abordable. Ce travail a pour objectif d'évaluer la faisabilité technique du fonctionnement intermittent de systèmes d'électrolyse à oxyde solide (SOEC) autour de 1073 K. Des conditions réalistes défavorables sont considérées, consistant en un système autonome sans source externe de chaleur et intégrant une compression d'hydrogène à 3 MPa. La problématique se compose de deux aspects : i) la gamme de fonctionnement du système, limitée à 60-100% en raison de gradients thermiques, est étendue via des stratégies de contrôle efficaces, ii) des procédures sont définies pour minimiser l'impact de l'intermittence sur la durée de vie. Premièrement, une stratégie de contrôle modulaire est proposée, consistant en l'utilisation de plusieurs unités indépendantes qui fonctionnent dans une gamme de puissance tolérable, ou sont arrêtées. La gamme de fonctionnement du système est ainsi étendue à 15-100% dans le cas de quatre unités. Une stratégie de contrôle complémentaire, consistant en un chauffage électrique interne, permet d'étendre la gamme de fonctionnement en réduisant les gradients thermiques, mais elle est susceptible de diminuer la durée de vie. Elle n'est donc appliquée qu'à une unité afin de suivre la courbe de charge et d'étendre la gamme de fonctionnement du système à 3-100%. Deuxièmement, 1800 cycles électriques on-off sont appliqués à une SOEC sans impact sur la dégradation, ce qui montre que des arrêts/démarrages répétés ne diminuent pas la durée de vie. De plus, des procédures de démarrage, standby et arrêt sont définies. Enfin, deux études de systèmes Eolien-SOEC et Solaire-SOEC fonctionnant pendant un an montrent que, avec les stratégies de contrôle implémentées, le système SOEC stocke la puissance appliquée avec un rendement de 91% sur PCS en moyenne, alors que les unités fonctionnent dans des conditions tolérables mis à part une unité qui suit la courbe de charge et est susceptible d'avoir une durée de vie diminuée. / Power-to-Gas could become an attractive solution for renewable electricity storage, provided that affordable electrolysers are able to operate efficiently under intermittent conditions. This work aims to assess the technical feasibility of operating intermittently a Solid Oxide Electrolysis Cell (SOEC) system around 1073 K. Realistic unfavourable conditions are considered, consisting in a standalone system operated with no external heat source and integrating hydrogen compression to 3 MPa. Two challenges are tackled in this work: i) the system power load range, limited to 60-100% due to thermal gradients, is extended via efficient control strategies, ii) procedures are defined to minimise the impact of the intermittency on the lifetime. First, a modular control strategy is proposed, consisting in the use of several SOEC units which are either operated in a tolerable power load range, or switched off. The system power load range is hence extended to 15-100% in the case of four units. A complementary control strategy, consisting in internal electrical heating, enables to extend the load range by reducing thermal gradients, but it may decrease the lifetime. Thus, it is applied to only one unit for it to follow the load curve and extend the system power load range to 3-100%. Secondly, 1800 on-off electric cycles are applied to an SOEC with no degradation increase, which shows that repeated start/stops do not decrease the lifetime. Start-up, standby and shut-down procedures are also defined. Finally, two case studies of Wind-SOEC and Solar-SOEC systems operated over one year show that, with the implemented control strategies, the SOEC system stores the applied power with an average efficiency of 91% vs. HHV, while units operate under tolerable conditions apart from one unit which follows the load curve and may have a decreased lifetime.

Page generated in 0.0892 seconds