• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Azoxystrobin and Arbuscular Mycorrhizal Fungal Colonization on Four Non-Target Plant Species

Tbaileh, Tarek 28 November 2012 (has links)
Azoxystrobin (AZY), a systemic broad-spectrum fungicide, is applied on crops to control soil-borne pathogenic fungi. This study aimed to determine the effects of AZY on non-target plant species and Glomus intraradices Schenck & Smith, an arbuscular mycorrhizal fungus (AMF) associated with plants' roots. We hypothesized that AZY negatively affects AMF viability; and that, if the plants were dependent on this symbiosis, AZY exerts an indirect detrimental effect on plant growth. To test this, three mycotrophic (Phalaris arundinacea L., Solidago canadense L., Geum canadense Jacq.) and one non-mycotrophic (Chenopodium album L.) native plant species were subjected to five AZY doses with or without AMF. Plants were grown for 60 days in a greenhouse, in individual pots, (4 plants X 2 AMF X 5 AZY X 6 replicates), and mesocosms (1 mes. X 2 AMF X 5 AZY X 6 replicates), and harvested 30 days after spraying, and dry mass was taken. Fresh root samples were used for microscopic assessment of AMF colonization. The results from the individual pot experiment show that the effects of AZY on biomass varied across plant species. AZY led to a significant increase in shoot and root mass of P. arundinacea, and a decrease in shoot mass of AMF inoculated G. canadense. The presence of AMF resulted in a significant increase in root and shoot mass of P. arundinacea, and an increase in root mass of S. canadense and shoot mass of C. album. In the mesocosm experiment AZY did not have a significant effect on the measured parameters, although the presence of AMF significantly increased root, shoot, and total dry mass of G. canadense and P. arundinacea. Conversely, AMF significantly decreased shoot and total dry mass of S. canadense. The results suggest that both direct and indirect effects should be taken into account when assessing the impact of pesticides on non-target plant species.
2

Effect of Azoxystrobin and Arbuscular Mycorrhizal Fungal Colonization on Four Non-Target Plant Species

Tbaileh, Tarek 28 November 2012 (has links)
Azoxystrobin (AZY), a systemic broad-spectrum fungicide, is applied on crops to control soil-borne pathogenic fungi. This study aimed to determine the effects of AZY on non-target plant species and Glomus intraradices Schenck & Smith, an arbuscular mycorrhizal fungus (AMF) associated with plants' roots. We hypothesized that AZY negatively affects AMF viability; and that, if the plants were dependent on this symbiosis, AZY exerts an indirect detrimental effect on plant growth. To test this, three mycotrophic (Phalaris arundinacea L., Solidago canadense L., Geum canadense Jacq.) and one non-mycotrophic (Chenopodium album L.) native plant species were subjected to five AZY doses with or without AMF. Plants were grown for 60 days in a greenhouse, in individual pots, (4 plants X 2 AMF X 5 AZY X 6 replicates), and mesocosms (1 mes. X 2 AMF X 5 AZY X 6 replicates), and harvested 30 days after spraying, and dry mass was taken. Fresh root samples were used for microscopic assessment of AMF colonization. The results from the individual pot experiment show that the effects of AZY on biomass varied across plant species. AZY led to a significant increase in shoot and root mass of P. arundinacea, and a decrease in shoot mass of AMF inoculated G. canadense. The presence of AMF resulted in a significant increase in root and shoot mass of P. arundinacea, and an increase in root mass of S. canadense and shoot mass of C. album. In the mesocosm experiment AZY did not have a significant effect on the measured parameters, although the presence of AMF significantly increased root, shoot, and total dry mass of G. canadense and P. arundinacea. Conversely, AMF significantly decreased shoot and total dry mass of S. canadense. The results suggest that both direct and indirect effects should be taken into account when assessing the impact of pesticides on non-target plant species.
3

Effect of Azoxystrobin and Arbuscular Mycorrhizal Fungal Colonization on Four Non-Target Plant Species

Tbaileh, Tarek January 2012 (has links)
Azoxystrobin (AZY), a systemic broad-spectrum fungicide, is applied on crops to control soil-borne pathogenic fungi. This study aimed to determine the effects of AZY on non-target plant species and Glomus intraradices Schenck & Smith, an arbuscular mycorrhizal fungus (AMF) associated with plants' roots. We hypothesized that AZY negatively affects AMF viability; and that, if the plants were dependent on this symbiosis, AZY exerts an indirect detrimental effect on plant growth. To test this, three mycotrophic (Phalaris arundinacea L., Solidago canadense L., Geum canadense Jacq.) and one non-mycotrophic (Chenopodium album L.) native plant species were subjected to five AZY doses with or without AMF. Plants were grown for 60 days in a greenhouse, in individual pots, (4 plants X 2 AMF X 5 AZY X 6 replicates), and mesocosms (1 mes. X 2 AMF X 5 AZY X 6 replicates), and harvested 30 days after spraying, and dry mass was taken. Fresh root samples were used for microscopic assessment of AMF colonization. The results from the individual pot experiment show that the effects of AZY on biomass varied across plant species. AZY led to a significant increase in shoot and root mass of P. arundinacea, and a decrease in shoot mass of AMF inoculated G. canadense. The presence of AMF resulted in a significant increase in root and shoot mass of P. arundinacea, and an increase in root mass of S. canadense and shoot mass of C. album. In the mesocosm experiment AZY did not have a significant effect on the measured parameters, although the presence of AMF significantly increased root, shoot, and total dry mass of G. canadense and P. arundinacea. Conversely, AMF significantly decreased shoot and total dry mass of S. canadense. The results suggest that both direct and indirect effects should be taken into account when assessing the impact of pesticides on non-target plant species.

Page generated in 0.0781 seconds