• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da interação solo-estrutura via acoplamento MEC-MEF / Analysis of soil-structure interaction using BEM-FEM coupling

Ribeiro, Dimas Betioli 08 April 2005 (has links)
O objetivo central deste trabalho é o estudo da interação do solo com a estrutura. Para tanto, são introduzidos mais recursos na ferramenta numérica desenvolvida no trabalho de Almeida (2003a). O solo é modelado pelo método dos elementos de contorno (MEC) tridimensional, aplicando a solução fundamental de Kelvin. É possível analisar problemas nos quais o solo é composto por camadas de diferentes características físicas, apoiadas em uma superfície de deslocamento nulo e enrijecidas por elementos de fundação, também modelados pelo MEC tridimensional. A superestrutura tridimensional, diferentemente do modelo utilizado em Almeida (2003a), é simulada pelo método dos elementos finitos (MEF), sendo composta por elementos planos e reticulares com seis graus de liberdade por nó. Também é introduzido no programa o recurso de simular um número qualquer de blocos, modelados pelo MEC tridimensional, apoiados sobre o solo. Estes blocos podem ser utilizados como elementos de fundação para o edifício, permitindo estudar a interação do solo em conjunto com os blocos e o edifício. São analisados alguns exemplos, nos quais é validada a formulação empregada e é demonstrada a necessidade de se considerar a interação do solo com a estrutura em problemas práticos de engenharia / The main objective of this work is to study the soil structure interaction problem. For such, more resources in the numerical tool developed in Almeida (2003a) are introduced. The soil is simulated by the three-dimensional boundary element method (BEM), applying Kelvin’s fundamental solution. It is possible to analyze problems in which the soil is composed by layers of different physical characteristics, supported by a rigid and adhesive interface and reinforced by foundation elements, also simulated by the three-dimensional BEM. The three-dimensional superstructure is simulated using the finite element method (FEM), with shell and frame elements with six degrees of freedom by node. This model is different of the one used in Almeida (2003a). It is also introduced in the program the resource to consider blocks, simulated by the three-dimensional BEM and supported by the soil. These blocks can be used as foundation elements for the building, coupling the non-homogeneous soil-foundation-blocks-superstructure system as a whole. Some examples are analyzed, in order to validate the theory employed and demonstrate the necessity of considering the soil structure interaction in practical problems of engineering
2

Estudo e aplicação de um elemento de contorno infinito na análise da interação solo-estrutura via combinação MEC/MEF / Study and application of an infinite boundary element for soil-structure interaction analysis via FEM/BEM coupling

Ribeiro, Dimas Betioli 26 March 2009 (has links)
Neste trabalho, é desenvolvido um programa de computador para a análise estática e tridimensional de problemas de interação solo-estrutura. O programa permite considerar várias camadas de solo, cada qual com características físicas diferentes. Sobre este solo, o qual pode conter estacas, podem ser apoiados diversos tipos de estruturas, tais como placas e até um edifício. Todos os materiais considerados são homogêneos, isotrópicos, elásticos e lineares. O solo tridimensional é modelado com o método dos elementos de contorno (MEC), empregando as soluções fundamentais de Kelvin e uma técnica alternativa na consideração do maciço não-homogêneo. Esta técnica, que é uma contribuição original deste trabalho, é baseada no relacionamento das soluções fundamentais de deslocamento dos diferentes domínios, permitindo que sejam analisados como um único sólido sem a necessidade de equações de equilíbrio e compatibilidade. Isso reduz o sistema de equações final e melhora a precisão dos resultados, conforme comprovado nos exemplos apresentados. Para reduzir o custo computacional sem prejudicar a precisão dos resultados, é utilizada uma malha de elementos de contorno infinitos (ECI) nas bordas da malha de ECs para modelar o comportamento das variáveis de campo em longas distâncias. A formulação do ECI mapeado utilizado é outra contribuição original deste trabalho, sendo baseado em um EC triangular. É demonstrado por meio de exemplos que tal formulação é eficiente para a redução de malha, contribuindo de forma significativa na redução do custo computacional. Todas as estruturas que interagem com o solo, incluindo as de fundação, são simuladas empregando o método dos elementos finitos (MEF). Cada estaca é modelada como uma linha de carga empregando um único elemento finito com 14 parâmetros nodais, o qual utiliza funções de forma do quarto grau para aproximar os deslocamentos horizontais, do terceiro grau para as forças horizontais e deslocamentos verticais, do segundo grau para as forças cisalhantes verticais e constantes para as reações da base. Este elemento é empregado em outros trabalhos, no entanto os autores utilizam as soluções fundamentais de Mindlin na consideração da presença da estaca no solo. Desta forma, a formulação desenvolvida neste trabalho com as soluções fundamentais de Kelvin pode ser considerada mais uma contribuição original. No edifício, que pode incluir um radier como estrutura de fundação, são utilizados dois tipos de EFs. Os pilares e vigas são simulados com elementos de barra, os quais possuem dois nós e seis graus de liberdade por nó. As lajes e o radier são modelados empregando elementos planos, triangulares e com três nós. Nestes EFs triangulares são superpostos efeitos de membrana e flexão, totalizando também seis graus de liberdade por nó. O acoplamento MEC/MEF é feito transformando as cargas de superfície do MEC em carregamentos nodais reativos no MEF. Além de exemplos específicos nos Capítulos teóricos, um Capítulo inteiro é dedicado a demonstrar a abrangência e precisão da formulação desenvolvida, comparando-a com resultados de outros autores. / In this work, a computer code is developed for the static analysis of three-dimensional soil-structure interaction problems. The program allows considering a layered soil, which may contain piles. This soil may support several structures, such as shells or even an entire building. All materials are considered homogeneous, isotropic, elastic and linear. The three-dimensional soil is modeled with the boundary element method (BEM), employing Kelvin fundamental solutions and an alternative multi-region technique. This technique, which is an original contribution of this work, is based on relating the displacement fundamental solution of the different domains, allowing evaluating them as an unique solid and not requiring compatibility or equilibrium equations. In such a way, the final system of equations is reduced and more accurate results are obtained, as demonstrated in the presented examples. In order to reduce the computational cost maintaining the accuracy, an infinite boundary element (IBE) mesh is employed at the BE mesh limits to model the far field behavior. The mapped IBE utilized, based on a triangular EC, is another original contribution of this work. In the presented examples it is demonstrated that this IBE formulation is efficient for mesh reduction, implying on a significant computational cost reduction. All structures that interact with the soil, including the foundations, are simulated with de finite element method (FEM). The piles are modeled using a one-dimensional 14 parameter finite element, with forth degree shape functions for horizontal displacement approximation, third degree shape functions for horizontal forces and vertical displacement, second degree shape functions for vertical share force, and constant for the base reaction. This element is employed in other works, however the authors utilize Mindlin fundamental solutions for the pile presence consideration in the soil. In such a way, the formulation developed in this work with Kelvin fundamental solutions may be considered one more original contribution. The building, which may include a radier as a foundation structure, is modeled using two types os FEs. Piles and beams are simulated using bar FEs with two nodes and six degrees of freedom per node. The radier and pavements are modeled employing plane triangular three-node FEs. In these FEs plate and membrane effects are superposed, totalizing six degrees of freedom per node. FEM/BEM coupling is made by transforming the BEM tractions in nodal reactions in the FEM. Even though specific examples are presented in the theoretical Chapters, a role Chapter is dedicated for demonstrating the formulation accuracy and coverage. In most examples, the results are compared with the ones obtained by other authors.
3

Estudo e aplicação de um elemento de contorno infinito na análise da interação solo-estrutura via combinação MEC/MEF / Study and application of an infinite boundary element for soil-structure interaction analysis via FEM/BEM coupling

Dimas Betioli Ribeiro 26 March 2009 (has links)
Neste trabalho, é desenvolvido um programa de computador para a análise estática e tridimensional de problemas de interação solo-estrutura. O programa permite considerar várias camadas de solo, cada qual com características físicas diferentes. Sobre este solo, o qual pode conter estacas, podem ser apoiados diversos tipos de estruturas, tais como placas e até um edifício. Todos os materiais considerados são homogêneos, isotrópicos, elásticos e lineares. O solo tridimensional é modelado com o método dos elementos de contorno (MEC), empregando as soluções fundamentais de Kelvin e uma técnica alternativa na consideração do maciço não-homogêneo. Esta técnica, que é uma contribuição original deste trabalho, é baseada no relacionamento das soluções fundamentais de deslocamento dos diferentes domínios, permitindo que sejam analisados como um único sólido sem a necessidade de equações de equilíbrio e compatibilidade. Isso reduz o sistema de equações final e melhora a precisão dos resultados, conforme comprovado nos exemplos apresentados. Para reduzir o custo computacional sem prejudicar a precisão dos resultados, é utilizada uma malha de elementos de contorno infinitos (ECI) nas bordas da malha de ECs para modelar o comportamento das variáveis de campo em longas distâncias. A formulação do ECI mapeado utilizado é outra contribuição original deste trabalho, sendo baseado em um EC triangular. É demonstrado por meio de exemplos que tal formulação é eficiente para a redução de malha, contribuindo de forma significativa na redução do custo computacional. Todas as estruturas que interagem com o solo, incluindo as de fundação, são simuladas empregando o método dos elementos finitos (MEF). Cada estaca é modelada como uma linha de carga empregando um único elemento finito com 14 parâmetros nodais, o qual utiliza funções de forma do quarto grau para aproximar os deslocamentos horizontais, do terceiro grau para as forças horizontais e deslocamentos verticais, do segundo grau para as forças cisalhantes verticais e constantes para as reações da base. Este elemento é empregado em outros trabalhos, no entanto os autores utilizam as soluções fundamentais de Mindlin na consideração da presença da estaca no solo. Desta forma, a formulação desenvolvida neste trabalho com as soluções fundamentais de Kelvin pode ser considerada mais uma contribuição original. No edifício, que pode incluir um radier como estrutura de fundação, são utilizados dois tipos de EFs. Os pilares e vigas são simulados com elementos de barra, os quais possuem dois nós e seis graus de liberdade por nó. As lajes e o radier são modelados empregando elementos planos, triangulares e com três nós. Nestes EFs triangulares são superpostos efeitos de membrana e flexão, totalizando também seis graus de liberdade por nó. O acoplamento MEC/MEF é feito transformando as cargas de superfície do MEC em carregamentos nodais reativos no MEF. Além de exemplos específicos nos Capítulos teóricos, um Capítulo inteiro é dedicado a demonstrar a abrangência e precisão da formulação desenvolvida, comparando-a com resultados de outros autores. / In this work, a computer code is developed for the static analysis of three-dimensional soil-structure interaction problems. The program allows considering a layered soil, which may contain piles. This soil may support several structures, such as shells or even an entire building. All materials are considered homogeneous, isotropic, elastic and linear. The three-dimensional soil is modeled with the boundary element method (BEM), employing Kelvin fundamental solutions and an alternative multi-region technique. This technique, which is an original contribution of this work, is based on relating the displacement fundamental solution of the different domains, allowing evaluating them as an unique solid and not requiring compatibility or equilibrium equations. In such a way, the final system of equations is reduced and more accurate results are obtained, as demonstrated in the presented examples. In order to reduce the computational cost maintaining the accuracy, an infinite boundary element (IBE) mesh is employed at the BE mesh limits to model the far field behavior. The mapped IBE utilized, based on a triangular EC, is another original contribution of this work. In the presented examples it is demonstrated that this IBE formulation is efficient for mesh reduction, implying on a significant computational cost reduction. All structures that interact with the soil, including the foundations, are simulated with de finite element method (FEM). The piles are modeled using a one-dimensional 14 parameter finite element, with forth degree shape functions for horizontal displacement approximation, third degree shape functions for horizontal forces and vertical displacement, second degree shape functions for vertical share force, and constant for the base reaction. This element is employed in other works, however the authors utilize Mindlin fundamental solutions for the pile presence consideration in the soil. In such a way, the formulation developed in this work with Kelvin fundamental solutions may be considered one more original contribution. The building, which may include a radier as a foundation structure, is modeled using two types os FEs. Piles and beams are simulated using bar FEs with two nodes and six degrees of freedom per node. The radier and pavements are modeled employing plane triangular three-node FEs. In these FEs plate and membrane effects are superposed, totalizing six degrees of freedom per node. FEM/BEM coupling is made by transforming the BEM tractions in nodal reactions in the FEM. Even though specific examples are presented in the theoretical Chapters, a role Chapter is dedicated for demonstrating the formulation accuracy and coverage. In most examples, the results are compared with the ones obtained by other authors.
4

Análise da interação solo-estrutura via acoplamento MEC-MEF / Analysis of soil-structure interaction using BEM-FEM coupling

Dimas Betioli Ribeiro 08 April 2005 (has links)
O objetivo central deste trabalho é o estudo da interação do solo com a estrutura. Para tanto, são introduzidos mais recursos na ferramenta numérica desenvolvida no trabalho de Almeida (2003a). O solo é modelado pelo método dos elementos de contorno (MEC) tridimensional, aplicando a solução fundamental de Kelvin. É possível analisar problemas nos quais o solo é composto por camadas de diferentes características físicas, apoiadas em uma superfície de deslocamento nulo e enrijecidas por elementos de fundação, também modelados pelo MEC tridimensional. A superestrutura tridimensional, diferentemente do modelo utilizado em Almeida (2003a), é simulada pelo método dos elementos finitos (MEF), sendo composta por elementos planos e reticulares com seis graus de liberdade por nó. Também é introduzido no programa o recurso de simular um número qualquer de blocos, modelados pelo MEC tridimensional, apoiados sobre o solo. Estes blocos podem ser utilizados como elementos de fundação para o edifício, permitindo estudar a interação do solo em conjunto com os blocos e o edifício. São analisados alguns exemplos, nos quais é validada a formulação empregada e é demonstrada a necessidade de se considerar a interação do solo com a estrutura em problemas práticos de engenharia / The main objective of this work is to study the soil structure interaction problem. For such, more resources in the numerical tool developed in Almeida (2003a) are introduced. The soil is simulated by the three-dimensional boundary element method (BEM), applying Kelvin’s fundamental solution. It is possible to analyze problems in which the soil is composed by layers of different physical characteristics, supported by a rigid and adhesive interface and reinforced by foundation elements, also simulated by the three-dimensional BEM. The three-dimensional superstructure is simulated using the finite element method (FEM), with shell and frame elements with six degrees of freedom by node. This model is different of the one used in Almeida (2003a). It is also introduced in the program the resource to consider blocks, simulated by the three-dimensional BEM and supported by the soil. These blocks can be used as foundation elements for the building, coupling the non-homogeneous soil-foundation-blocks-superstructure system as a whole. Some examples are analyzed, in order to validate the theory employed and demonstrate the necessity of considering the soil structure interaction in practical problems of engineering
5

Análise da interação solo não-homogêneo/estrutura via acoplamento MEC/MEF / Analysis of nonhomogeneous soil-structure interaction using BEM-FEM coupling

Almeida, Valério da Silva 25 April 2003 (has links)
O estudo do comportamento mecânico do complexo sistema advindo da interação entre solo/subestrutura/superestrutura é o tema do trabalho. Neste contexto, a representação do maciço é feita usando-se o método dos elementos de contorno (MEC) em abordagem 3D, de maneira que se possa simular o maciço com características mecânicas não-homogêneas, além de se considerar uma camada de apoio indeslocável a distâncias prescritas a priori e condição de aderência perfeita. A subestrutura também é representada via MEC tridimensional, a qual está imersa dentro deste meio heterogêneo. A infra e a superestrutura são modeladas empregando o método dos elementos finitos (MEF), com o uso de elementos estruturais reticulares e elementos laminares. São apresentados alguns exemplos em que se valida a formulação e outros que demonstram a potencialidade e a necessidade de se empregar a formulação para a melhor análise do complexo fenômeno em estudo. Por fim, demonstra-se a obrigatoriedade de se otimizar a formulação, empregando-se duas grandes ferramentas numéricas: o paralelismo e o emprego de um adequado método de resolução de sistemas esparsos. / The analysis of the soil-structure system interaction is a vast field of interest in the area of civil engineering. A realistic representation of its behaviour. Thus, in the present research, the soil is considered a non-homogeneous continuum supported by a rigid and adhesive interface and modelled by boundary element method via Kelvin solution in 3D space. The foundation is also modelled by this above-mentioned modelling technique. The raft foundation and the superstructure are represented by finite shell and 3D frame elements. In order to estimate the accuracy and the potentiality of the proposed numerical formulation, some examples are validated when compared to similar approaches, and others simulations are presented to stress the necessity of coupling the non-homogeneous soil-foundation-radier-superstructure system as a whole. Finally, to acquire numerical time efficiency, it is shown that it is imperative to apply parallel processing and sparse techniques for the solution of the final system.
6

Análise da interação solo não-homogêneo/estrutura via acoplamento MEC/MEF / Analysis of nonhomogeneous soil-structure interaction using BEM-FEM coupling

Valério da Silva Almeida 25 April 2003 (has links)
O estudo do comportamento mecânico do complexo sistema advindo da interação entre solo/subestrutura/superestrutura é o tema do trabalho. Neste contexto, a representação do maciço é feita usando-se o método dos elementos de contorno (MEC) em abordagem 3D, de maneira que se possa simular o maciço com características mecânicas não-homogêneas, além de se considerar uma camada de apoio indeslocável a distâncias prescritas a priori e condição de aderência perfeita. A subestrutura também é representada via MEC tridimensional, a qual está imersa dentro deste meio heterogêneo. A infra e a superestrutura são modeladas empregando o método dos elementos finitos (MEF), com o uso de elementos estruturais reticulares e elementos laminares. São apresentados alguns exemplos em que se valida a formulação e outros que demonstram a potencialidade e a necessidade de se empregar a formulação para a melhor análise do complexo fenômeno em estudo. Por fim, demonstra-se a obrigatoriedade de se otimizar a formulação, empregando-se duas grandes ferramentas numéricas: o paralelismo e o emprego de um adequado método de resolução de sistemas esparsos. / The analysis of the soil-structure system interaction is a vast field of interest in the area of civil engineering. A realistic representation of its behaviour. Thus, in the present research, the soil is considered a non-homogeneous continuum supported by a rigid and adhesive interface and modelled by boundary element method via Kelvin solution in 3D space. The foundation is also modelled by this above-mentioned modelling technique. The raft foundation and the superstructure are represented by finite shell and 3D frame elements. In order to estimate the accuracy and the potentiality of the proposed numerical formulation, some examples are validated when compared to similar approaches, and others simulations are presented to stress the necessity of coupling the non-homogeneous soil-foundation-radier-superstructure system as a whole. Finally, to acquire numerical time efficiency, it is shown that it is imperative to apply parallel processing and sparse techniques for the solution of the final system.

Page generated in 0.05 seconds