• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 380
  • 191
  • 56
  • 49
  • 22
  • 13
  • 13
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 872
  • 178
  • 81
  • 69
  • 64
  • 59
  • 54
  • 52
  • 51
  • 50
  • 47
  • 46
  • 41
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The complex solubility of silver chloride, silver bromide, silver iodide, and silver thiocyanate in mixtures of water with ethanol, methanol, acetone, and dioxane

Wooley, Earl Madsen 01 May 1969 (has links)
The results of an investigation of the solubilities of silver chloride, silver bromide, silver iodide, and silver thiocyanate in water, in approximately 10, 20, 30, 40, and 50% by weight ethanol-water, methanol-water, acetone-water, and dioxane-water mixtures, and in an approximately 60% by weight dioxane-water mixture at 25°C are presented. The concentration of the anion of each of these four silver salts was varied between about 10^-5 and 10^-1 formal in each solvent. A radiotracer technique was used to determine the total silver content of these various solutions saturated with the appropriate slightly soluble silver salt. The results of "silver ion specific" electrode potential difference measurements in these saturated solutions were used in some of the calculations. Least-squares methods of data treatment were used to calculate the values of the thermodynamic equilibrium constants that describe the relationships among the various species in solution. A comparison of the results with the various theories of ionic interactions in solution is made and some of the inadequacies of these theories are discussed.
82

Simple Descriptors for Modeling the Solubility of Gases, Alcohols, and Halogenated Hydrocarbons in Water

Sidigu, Sule 18 December 2007 (has links)
No description available.
83

The phase behavior and solubility relations of the benzene-water system /

Rebert, Charles J. January 1955 (has links)
No description available.
84

Solubility prediction in nonideal liquid mixtures /

Ochsner, Allison Becker January 1985 (has links)
No description available.
85

Effects of Feeding Phytase Enzyme and HAP Corn on Solubility of Phosphorus, Copper, and Zinc in Turkey Manure and Manure-Amended Soils

Lawrence, Christophe L. 12 July 2000 (has links)
Manure from turkey poults on five diets were extracted both fresh (wet) and after drying. Soils amended with wet manure were also extracted. Phosphorus, Cu, and Zn were extracted with 0.01 M CaCl₂ and acidic Mehlich III extractant (Zn in soil extracts was not evaluated). Dietary treatments were (1) normal phytic acid (NPA) corn and 0.135% inorganic P (NPA diet); (2) NPA corn, 600 units phytase enzyme, and 0.135% inorganic P (NPA+Phyt diet); (3) High available phosphorus (HAP) corn and 0.135% inorganic P (HAP diet); (4) HAP corn, 600 units phytase, and 0.135% inorganic P (HAP+Phyt diet); (5) NPA corn and 0.345% inorganic P (NPA+P diet). The NPA+P diet was similar to conventional diets being fed commercially. The NPA+Phyt diet was similar to alternative, phytase-amended diets being fed commercially. Feeding the alternative NPA+Phyt, HAP, and HAP+Phyt diets instead of the NPA+P diet reduced total P in manures by 40%, but increased the percentage of total manure P extracted with 0.01 M CaCl₂ from fresh excreta (P < 0.05). Soils amended with wet NPA+Phyt, HAP, and HAP+Phyt manures released 29 to 49% more water-soluble P than soils amended with NPA+P manure on an equal-P basis (P < 0.05). Feeding the NPA+Phyt diet instead of the NPA+P diet did not affect the percentage of total P manure extracted by Mehlich III from wet excreta, while feeding the HAP and HAP+Phyt diets increased the percentage of total manure P soluble in Mehlich III (P < 0.05). Soils amended with wet NPA+Phyt manure did not release more Mehlich III-extractable P than soils amended with NPA+P manure on an equal-P basis. Soils amended with wet HAP and HAP+Phyt manures released more Mehlich III-extractable P than soils amended with NPA+P manure on an equal-P basis (P < 0.05). Treatment-induced differences in extractability of manure and soil P appeared to be caused by a higher proportion of P in calcium phosphate form in the NPA+P manure. Drying manures prior to extraction generally heightened differences in solubility of P between the NPA+P and other manures. Feeding the alternative NPA+Phyt, HAP, and HAP+Phyt diets instead of the NPA+P diet did not affect total Cu levels in manure or the percentage of total Cu extracted from manure with 0.01 M CaCl₂. After soils were treated with manure on an equal-Cu and equal-N basis, soils amended with NPA+Phyt, HAP, and HAP+Phyt manures released more water-soluble Cu than NPA+P-amended soils (P < 0.05). Under P-based manure management, soils amended with the three alternative manures released 92 to 108% more water-soluble Cu than NPA+P-treated soils (P < 0.05). Extractable Cu increased so dramatically because conversion to the alternative diets boosted total manure loadings by 67%. Mehlich III extraction of soils amended with manure on an equal-N and -Cu basis indicated no effect of manure type on Cu availability. Feeding the NPA+Phyt, HAP, and HAP+Phyt diets instead of the NPA+P diet did not affect total Zn levels in excreta, but caused at least a five-fold increase in the percentage of total manure Zn extracted by 0.01 M CaCl₂ from fresh excreta (P < 0.05). Feeding the NPA+Phyt, HAP, and HAP+Phyt diets did not alter the percentage of total manure Zn extracted by Mehlich III from wet excreta. / Master of Science
86

Solubility of organic compounds in nonaqueous systems.

Mishra, Dinesh Shyamdeo. January 1989 (has links)
Solubility of drugs in non-aqueous systems is very important in understanding the partitioning and transport behavior. The present study was undertaken to evaluate the entropic and enthalpic contribution to activity coefficient of organic compounds (polycyclic aromatic hydrocarbons, aliphatic acids, aliphatic alcohols etc.) in non-aqueous solvents. The activity coefficient can be written as: ln γ₁ = ln γ₁ᶜ + ln γ₁ʳ where superscript "c" and "r" denote entropic (combinatorial) and enthalpic contribution respectively. We selected three solvent systems: benzene, triolein and octanol. The different models considered in this study were Flory-Huggins, Scatchard-Hildebrand, UNIQUAC combinatorial and UNIFAC residual. A combination of Flory-Huggins and Scatchard-Hildebrand which accounts for both the entropic and enthalpic effects gives the best predictions in all the solvents considered.
87

SOLUBILIZATION OF SOME POORLY SOLUBLE DRUGS BY COSOLVENTS (FORMULATION, IDEALITY, POLARITY).

RUBINO, JOSEPH THOMAS. January 1984 (has links)
The solubilities of three poorly water soluble drugs, phenytoin, diazepam and benzocaine, were measured in various cosolvent-water mixtures. The data were generally described by the relationship: log (S(m)/S(w)) = Σf₁σ₁ where S(m) is the solubility of the drug in the cosolvent-water mixture, S(w) is the solubility of the drug in water, f₁ is the volume fraction of cosolventi and σ₁ is the slope of the log(S(m)/S(w)) vs. f₁ plot. In most cases, some positive or negative deviation from the log-linear solubility equation is observed. The deviation is similar for all three drugs in many of the cosolvent-water mixtures. This suggests that the deviation is primarily due to interactions between the solvent components. However, it could not be predicted from any of the physical properties of the solvent mixtures. Changes in the solute crystal structure could not be identified as a source of nonideality. The deviations from the log-linear solubility equation may involve such factors as changes in solvent structure, hydrophobic hydration, density changes and hydrogen bonding differences between solute and cosolvent. The slopes, σ₁, of the solubilization plots were related to various indexes of solvent polarity including dielectric constant, solubility parameter, partition coefficient, surface tension and interfacial tension. The best correlations were obtained with measures of solvent cohesive forces such as interfacial tension and solubility parameter. In general, the solubilities in mixtures of aprotic cosolvents and water are higher than predicted by any of the polarity indexes. The slopes are thus related to the hydrogen bonding ability of the cosolvent as expressed by the density of proton donor and acceptor groups of the neat cosolvent. The slopes of the solubilization plots can be predicted from linear relationships with polarity indexes of the cosolvent. Therefore it is possible to estimate the slope, σ, in any cosolvent-water mixture from the solubilities in two solvents for a given drug. Furthermore, the solubility in any cosolvent water mixture can be estimated by combining the log-linear solubility equation with the estimated slopes.
88

First principle studies on the solvation and dissociations of formaldehyde and formic acid in gas phase and aqueous phase. / 氣態下和水溶液中,甲醛分子HCHO和甲酸分子HCOOH的水合簇結構,溶解結構,以及離解反應機理的第一性原理研究 / CUHK electronic theses & dissertations collection / Qi tai xia he shui rong ye zhong, jia quan fen zi HCHO he jia suan fen zi HCOOH de shui he cu jie gou, rong jie jie gou, yi ji li jie fan ying ji li de di yi xing yuan li yan jiu

January 2012 (has links)
超臨界水中的溶解和化學反應受到一系列因素的影響,如溶解能,熵以及溶液密度等,是決定化學平衡的基本熱力學量,同時這些又受到溫度和壓強的控制。爲了解釋這些因素的影響,有必要把量子化學的靜態優化與分子動力學模擬相結合和比較。通過量子化學可以得到0K下的優化結構,而分子動力學模擬可以提高實際時間的勢能面。本論文的研究,主要圍繞在氣態下甲醛分子HCHO和甲酸分子HCOOH跟不同數目水分子H2O結合的水合簇結構,以及在常溫水溶液和超臨界水溶液中,甲醛HCHO和甲酸HCOOH的溶解結構和溫度所帶來的熱效應,最後研究甲酸HCOOH在水催化下的離解反應機理。 / 使用化學計算軟件Gaussian03和密度泛函理論方法,用6-311++G(d,p)基組來計算和研究氣態下甲醛分子和甲酸分子的水簇合物。通過不同數目的水分子所得到的最穩定簇合物的結構和能量,來研究甲醛分子HCHO,甲酸根離子HCOO⁻以及甲酸分子HCOOH與水分子相互結合時的氫鍵作用力強弱和簇合物的穩定性。同時,也考慮了甲酸酸解后的水簇合物結構,通過與沒有酸解的水簇合物的比較,為進一步瞭解水溶解中甲酸的酸解離情況提供寶貴的信息。 / 使用基於贗勢和平面波基組,以及密度泛函理論的從頭計算分子動力學軟件VASP,來模擬和研究甲醛分子HCHO和甲酸分子在水溶液中的溶解情況。根據對半徑關聯函數PRDF的統計結果,可以觀察出溶質的溶解結構,以及溶劑分子之間,或者溶質與溶劑分子之間的氫鍵作用。通過水合數目可以看出氫鍵作用力隨著溫度的提升而減弱。水溶液的溫度在臨界點之上時,其結果證實了甲酸的酸解反應受到嚴重的抑制,與常溫水的結果相反。 / 使用從頭計算分子動力學軟件CPMD中基於Car-Parrinello分子動力學方法的Metadynamics方法對甲酸的反應機理進行系統的研究,包含脫水反應和脫氫反應。解離反應分別包含不同數目的分子,通過對比來研究反應中水分子所起的潛在的催化作用。除此之外,通過300K和700K這兩種不同溫度下的結果對比,來解釋超臨界水溶解中甲酸快速解離的原因。自由能曲面和自由能壘揭示了在不同環境下甲酸的主要解離途徑。 / Solvation and chemical reactions in supercritical water are affected by a number of factors. Solvation energy, entropy, and densities are the basic thermodynamic quantities that determine the chemical equilibriums, which can be controlled by temperature and pressure. To account for these factors, static optimization leading to zero-temperature structures should be combined and compared with molecular dynamics simulation in real time. In my thesis, the solvation structures are studied in gas phase and aqueous phase, to understand the properties of solvent water and the thermal effect on the reactions. / The hydrated clusters of formaldehyde and formic acid in gas phase are explored computationally by density functional theory (DFT) with a basis set 6-311++G(d,p). Investigation on the structures and energies of hydrated HCHO, HCOO⁻ and HCOOH solvated by a number of water molecules is important for understanding the hydrogen bond interactions as the number of water molecules increases. Comparisons between non-dissociated and dissociated clusters of hydrated formic acid provide valuable information on the acidic dissociation of formic acid in aqueous solution. / The solvations of formaldehyde and formic acid in aqueous solution are simulated by density functional theory based ab initio molecular dynamics (AIMD) method with pseudopotentials and a plane wave basis set using Vienna Ab-initio Simulation Package (VASP). The pair radial distribution function is obtained to elucidate the solvation structure and the hydrogen bond interaction among solvent molecules, and between solute and solvent. The hydration number indicates the weakening of the hydrogen bond with increasing temperature. The results at the temperatures above the critical point of water show that the acid dissociation of formic acid is greatly depressed which is different from the results in ambient water. / The mechanisms for the dissociations of formic acid in the gas phase and in aqueous solution are studied by Car-Parrinello (CP)-based metadynamics (MTD) method, implemented in the Car-Parrinello Molecular Dynamics (CPMD) program. The two main dissociations channels of dehydration and dehydrogenation, including zero, one, two and bulk water molecules, respectively, are simulated with a biased external potential to examine the potential catalytic role of water. In addition, the thermal effects at two different temperatures are included to account for the rapid dissociation of formic acid in supercritical water. The free energy surfaces are reconstructed and the barriers are calculated to show the main dissociation pathway of formic acid in different environments. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Qiubo. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 185-194). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / TITLE PAGE --- p.i / ABSTRCACT (ENGLISH) --- p.ii / (CHINESE) --- p.v / AKNOWLEDGEMENTS --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF FIGURES --- p.xiv / LIST OF TABLES --- p.xxiv / Chapter Chapter ONE --- Background / Chapter 1.1 --- Introduction of green chemistry --- p.1 / Chapter 1.1.1 --- Green chemistry --- p.1 / Chapter 1.1.2 --- Supercritical fluid (SCF) and supercritical water (SCW) --- p.2 / Chapter 1.2 --- Formaldehyde and formic acid in supercritical water --- p.8 / Chapter 1.2.1 --- Formaldehyde --- p.8 / Chapter 1.2.2 --- Formic acid --- p.12 / Chapter 1.3 --- Scope of this thesis --- p.17 / Chapter Chapter TWO --- Theories and Calculation Methods / Chapter 2.1 --- General background --- p.19 / Chapter 2.1.1 --- Schrödinger equation --- p.19 / Chapter 2.1.2 --- Born-Oppenheimer approximation --- p.20 / Chapter 2.2 --- Hartree-Fock (HF) approximation and post-Hartree-Fock (post-HF) approximation --- p.22 / Chapter 2.3 --- Density functional theory (DFT) --- p.28 / Chapter 2.3.1 --- Kohn-Sham (KS) scheme --- p.29 / Chapter 2.3.2 --- Local density approximation (LDA) --- p.31 / Chapter 2.3.3 --- Generalized gradient approximation (GGA) --- p.33 / Chapter 2.3.4 --- Hybrid functionals --- p.34 / Chapter 2.4 --- Ab initio molecular dynamics (AIMD) --- p.35 / Chapter 2.4.1 --- Molecular dynamics --- p.35 / Chapter 2.4.2 --- Ab initio molecular dynamics --- p.36 / Chapter 2.4.3 --- Plane waves --- p.42 / Chapter 2.4.4 --- Pseudopotentials (PP) --- p.44 / Chapter 2.4.5 --- Periodic boundary condition (PBC) --- p.48 / Chapter 2.5 --- Metadynamics (MTD) method --- p.48 / Chapter 2.5.1 --- The Algorithm --- p.49 / Chapter 2.5.2 --- Lagrangian metadynamics and the choice of V(t,s) --- p.52 / Chapter 2.5.3 --- The choice of CVs --- p.53 / Chapter Chapter THREE --- Structures of the Hydrated Clusters of Formaldehyde and Formic Acid / Chapter 3.1 --- Introduction --- p.55 / Chapter 3.2 --- Computational details --- p.56 / Chapter 3.3 --- Results and discussions --- p.58 / Chapter 3.3.1 --- Studies of HCHO(H₂O)[subscript n] clusters, n = 0~4 --- p.58 / Chapter 3.3.1.1 --- The structures of HCHO(H₂O)[subscript n] clusters, n = 0~4 --- p.58 / Chapter 3.3.1.2 --- The energies of HCHO(H₂O)[subscript n] clusters, n = 0~4 --- p.63 / Chapter 3.3.2 --- Studies of HCHO⁻(H₂O)[subscript n] clusters, n = 0~6 --- p.65 / Chapter 3.3.2.1 --- The structures of HCHO⁻(H₂O)[subscript n] clusters, n = 0~4 --- p.66 / Chapter 3.3.2.2 --- The energies of HCHO⁻(H₂O)[subscript n] clusters, n = 0~4 --- p.71 / Chapter 3.3.2.3 --- Studies of HCOO⁻(H2O)[subscript n] clusters, n = 5 and 6 --- p.73 / Chapter 3.3.3 --- Studies of HCOOH⁻(H2O)[subscript n] and HCOO⁻(H₃O)⁺(H₂O)[subscript n-1] clusters --- p.76 / Chapter 3.3.3.1 --- Results of cis-HCOOH(H₂O)[subscript n] clusters and trans-HCOOH(H₂O)[subscript n] clusters, n = 0 ~ 4 --- p.76 / Chapter 3.3.3.2 --- Results of trans-HCOOH(H₂O)[subscript n] clusters, n > 4 --- p.82 / Chapter 3.3.3.3 --- Comparisons of non-dissociated trans-HCOOH(H₂O)[subscript n] clusters with dissociated ion pair HCOO⁻(H₃O)⁺(H₂O)[subscript n-1] clusters --- p.84 / Chapter 3.4 --- Summary --- p.87 / Chapter CHAPTER FOUR --- Ab initio Molecular Dynamics Studies on the Solvations of Formaldehyde HCHO and Formic Acid HCOOH in Water Solution at Different Temperatures / Chapter 4.1 --- Introduction --- p.90 / Chapter 4.2 --- Computational details --- p.93 / Chapter 4.3 --- Results and discussions --- p.94 / Chapter 4.3.1 --- The solvation of water solution --- p.94 / Chapter 4.3.1.1 --- The solvation of pure water solution at T = 300 K, 600 K, 700 K and 2000 K --- p.95 / Chapter 4.3.1.2 --- The solvation of proton H⁺ in water solution at T = 300 K and 700 K --- p.101 / Chapter 4.3.2 --- The solvation of formaldehyde HCHO in water solution at T = 300 K, 500 K, 700 K and 900 K --- p.104 / Chapter 4.3.3 --- The solvation of formate ion HCOO⁻ in water solution at T = 300 K, 500 K, 700 K and 900 K --- p.109 / Chapter 4.3.4 --- The solvation of formic acid HCOOH in water solution at T = 300 K, 500 K, 700 K and 900 K --- p.117 / Chapter 4.4 --- Summary --- p.125 / Chapter CHAPTER FIVE --- The Reactions of Formic Acid HCOOH: Insights from Car-Parrinello Based Metadynamics (MTD) Method / Chapter 5.1 --- Introduction --- p.128 / Chapter 5.2 --- Computational details --- p.130 / Chapter 5.3 --- Results and Discussions --- p.132 / Chapter 5.3.1 --- The intrinsic rotation of a single formic acid molecule HCOOH in gas phase at T = 300 K and T = 700 K --- p.132 / Chapter 5.3.2 --- The dehydration of formic acid in gas phase at T = 300 K and T = 700 K --- p.140 / Chapter 5.3.2.1 --- The dehydration of a single formic acid molecule trans-HCOOH --- p.140 / Chapter 5.3.2.2 --- The dehydration of formic acid molecule trans-HCOOH with one water molecule --- p.147 / Chapter 5.3.2.3 --- The dehydration of formic acid molecule trans-HCOOH with two water molecules --- p.152 / Chapter 5.3.3 --- The dehydrogenation of formic acid in gas phase at T = 300 K and T = 700 K --- p.158 / Chapter 5.3.3.1 --- The dehydrogenation of a single formic acid molecule cis-HCOOH --- p.158 / Chapter 5.3.3.2 --- The dehydrogenation of formic acid molecule cis-HCOOH with one water molecule --- p.163 / Chapter 5.3.3.3 --- The dehydrogenation of formic acid molecule cis-HCOOH with two water molecule --- p.167 / Chapter 5.3.4 --- The dissociations of formic acid in water solution at T = 300 K and T = 700 K --- p.171 / Chapter 5.3.4.1 --- The acid dissociation of formic acid in water solution --- p.173 / Chapter 5.3.4.2 --- The dehydration of formic acid in water solution --- p.175 / Chapter 5.3.4.3 --- The dehydrogenation of formic acid in water solution --- p.178 / Chapter 5.4 --- Summary --- p.181 / References --- p.185
89

Dissolution and enhanced solubilization of immiscible phase organic liquids in porous media : Theoretical, laboratory, and field investigations

Tick, Geoffrey Ray January 2003 (has links)
This dissertation examines three different aspects of groundwater contamination by immiscible liquids, both at laboratory and field scale. The first component incorporates a study of denser than water immiscible-liquid dissolution at the laboratory scale that aims to describe the effects of immiscible liquid source-zone saturation, distribution, and length on dissolution rates. It was observed that overall immiscible-liquid saturation, distribution, and source zone length did not influence initial dissolution rates under the condition of the experiments. However, transient phase dissolution behavior, primarily observed by the heterogeneously packed columns, was significantly different to that of the homogeneously packed columns. This indicates that initial dissolution rates are comparable for these different systems, however it is demonstrated that immiscible liquid distributions (e.g., heterogeneity) can significantly effect transient dissolution rates. The second component investigates the effectiveness of a field-scale partitioning tracer test (PTT) for the measurement of the amount of denser than water immiscible liquid in the subsurface. It was demonstrated that the effectiveness of partitioning tracer test may be significantly limited by factors contributing to nonideal transport such as sorption, tracer mass, and immiscible liquid distribution. The third component examines the effectiveness of a field-scale remediation technology for the enhanced removal of denser than water immiscible liquid in the subsurface. An important component of this project was the implementation of reagent recovery and reuse, which improved the efficiency of the technology. It was demonstrated that the effectiveness of enhanced solubilization technologies for groundwater remediation may be significantly limited by the distribution of immiscible liquid in the subsurface. However, the nature of cyclodextrin (enhanced-solubilization agent) makes it an attractive option for subsurface remediation of immiscible-liquid contaminants, especially for situations where mobilization is undesirable and where the use of higher-toxicity agents is not possible.
90

Thermodynamics of Mobile Order Theory: Solubility and Partition Aspects

De Fina, Karina M. 08 1900 (has links)
The purpose of this thesis is to analyze the thermochemical properties of solutes in nonelectrolyte pure solvents and to develop mathematical expressions with the ability to describe and predict solution behavior using mobile order theory. Solubilities of pesticides (monuron, diuron, and hexachlorobenzene), polycyclic aromatic hydrocarbons (biphenyl, acenaphthene, and phenanthrene), and the organometallic ferrocene were studied in a wide array of solvents. Mobile order theory predictive equations were derived and percent average absolute deviations between experimental and calculated mole fraction solubilities for each solute were as follows: monuron in 21 non-alcoholic solvents (48.4%), diuron in 28 non-alcoholic solvents (60.1%), hexachlorobenzene (210%), biphenyl (13.0%), acenaphthene (37.8%), phenanthrene (41.3%), and ferrocene (107.8%). Solute descriptors using the Abraham solvation model were also calculated for monuron and diuron. Coefficients in the general solvation equation were known for all the solvents and solute descriptors calculated using multilinear regression techniques.

Page generated in 0.1167 seconds