• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Electrostatic and Intermolecular Interactions on the Solution Behavior and Electrospinning of Functional Nanofibers

Hunley, Matthew T. 08 October 2010 (has links)
The solution rheological and electrospinning behavior of a series of charge-containing polymers, surface-active agents, and carbon nanotube composites was studied to investigate the effect of intermolecular interactions, including electrostatic interactions, hydrogen bonding, surface activity, and surface functionalization of carbon nanotubes. The synthesis of novel polyelectrolytes with varied topologies, charge content, and counterions tailored the charged macromolecules to elucidate structure-rheology and structure-processing relationships. In addition, the use of additives for electrospinning, including surfactants and nanofillers, allows us to tailor the functionality of electrospun nanofibers for high-performance applications. Novel polyelectrolytes based on poly(2-(N,N-dimethyl)aminoethyl methacrylate) (DMAEMA) were synthesized with the counteranions Cl-, NO3-, (CN)2N-, BF4-, PF6-, triflate (TfO-), and bis(trifluoromethanesulfonyl)imide (Tf2N-). The counteranion selection controlled the thermal transitions and degradation; the larger and more charge-delocalized anions typically resulted in lower Tg and higher decomposition temperature. The polyelectrolyte behavior in solution was nearly independent of anion choice, though solution conductivity depended on the electrophoretic mobility of the counterion. Charge containing copolymers of DMAEMA and di(ethylene glycol) methyl ether methacrylate (MEO2MA) were synthesized and demonstrated that polyelectrolyte behavior in solution was also nearly independent of charge content. Low ionic contents resulted in extended solution conformations and high conductivities. Controlled atom-transfer radical polymerization allowed the synthesis of star-shaped polyelectrolytes with varying arm numbers and lengths. The solution behavior of the stars deviated slightly from the linear polyelectrolytes due to significant counterion condensation within the star core and constrained polymer conformations. The linear and star-shaped polyelectrolytes were electrospun to understand the interplay between polyelectrolyte structure and electrospinnability. Similar to other strong polyelectrolytes described in the literature, PDMAEMA-based polyelectrolytes with polar anions (e.g. Cl-) experienced significant instabilities during electrospinning, requiring high concentrations and viscosities to stabilize the electrospinning jet. The use of large, more hydrophobic anions (BF4-, TfO-) led to increased electrospinnability. Unlike neutral branched polymers, which electrospin nearly identically to linear polymers of similar molecular weight, the star-shaped PDMAEMA-based polyelectrolytes required even higher viscosities than linear polyelectrolytes for stable electrospinning. The correlations between electrospinnability and solution rheological analysis are detailed. The use of surfactants facilitates the electrospinning of neutral polymers at lower concentrations. However, we have demonstrated that specific cylindrical aggregates of surfactants (wormlike micelles) can be electrospun into microfibers under the proper conditions. Ammonium and phospholipids surfactants as well as organogelators were studied using solution rheology and DLS to determine the effects of micellar structure and solution viscosity on the electrospinnability of low molar mass surfactants. In addition, the effects of charged and uncharged surfactants on the electrospinning behavior of poly(methyl methacrylate) were determined. Added surfactant facilitated uniform fiber formation at lower PMMA concentrations. XPS analysis demonstrated the formation of core-shell fibrous structures resulting from the self-migration of surfactants to the fiber surface. Hydrogen bonding also influences fiber formation through electrospinning. Star-shaped poly(D,L-lactide)s (PDLLAs) were end-functionalized with adenine (A) or thymine (T) units. The complementary hydrogen bonding between the adenine and thymine lead to thermoresponsive rheological behavior for mixtures of PDLLA-A and PDLLA-T. The mixtures could be electrospun above the hydrogen bond dissociation temperature and resulted in thicker fibers compared to unfunctionalized PDLLA stars. The hydrogen bonding allows the preparation of polymers with a combination desirable solid-state properties and very low processing viscosities. The effects of carbon nanotube incorporation on electrospinning behavior and fiber morphology were also investigated. Nonfuntionalized and carboxylic-acid functionalized carbon nanotubes were electrospun into polyurethane nanofibers. The nonfunctionalized nanotubes required high-shear melt mixing to disperse within the polyurethane, but remained well dispersed through electrospinning. The surface functionalization with acid groups produced nanotubes which dispersed more readily into the polyurethane solutions. TEM analysis revealed that nanotube dispersion and alignment within the nanofibers was similar for both nonfunctionalized and acid-functionalized nanotubes. / Ph. D.
2

The Influence of Branching and Intermolecular Interactions on the Formation of Electrospun Fibers

McKee, Matthew Gary 14 November 2005 (has links)
The implications of chain topology and intermolecular interactions on the electrospinning process were investigated for linear and randomly branched polymers. Empirical correlations were developed based on solution rheological measurements that predict the onset of electrospun fiber formation and average fiber diameter. In particular, for neutral, non-associating polymer solutions, the minimum concentration required for fiber formation was the entanglement concentration (Ce), and uniform, bead-free fibers were formed at 2 to 2.5 Ce. This was attributed to entanglement couplings stabilizing the electrospinning jet and preventing the Raleigh instability. Moreover, the influence of molar mass and degree of branching on electrospun fiber diameter was eliminated when the polymer concentration was normalized with Ce, and the fiber diameter universally scaled with C/Ce to the 2.7 power. Polymers modified with quadruple hydrogen bonding groups were investigated to determine the role of intermolecular interactions on the solution rheological behavior and the electrospinning process. In nonpolar solvents, the hydrogen bonding functionalized polymers displayed significant deviation from the electrospinning behavior for neutral solutions due to the strong intermolecular associations of the multiple hydrogen bonding groups. The predicted electrospinning behavior was recovered when the hydrogen bonding interactions were screened with a polar solvent. Moreover, it was observed that branching and multiple hydrogen bonding afforded significant processing advantages compared to functionalized, linear analogs of equal molar mass. For example, branched chains in the unassociated state possessed a larger Ce compared to the linear chains, which indicated a lower entanglement density of the former. However, in the associated state the linear and branched chains possessed nearly equivalent Ce values, suggesting a similar entanglement density. Thus, the branched polymers displayed significantly lower viscosities in the unassociated state compared to linear polymers, while still retaining sufficient entanglements in the associated state due to the reversible network structure of the multiple hydrogen bond sites. The solution rheological and processing behavior of polyelectrolyte solutions was also investigated to discern the role of electrostatic interactions on electrospun fiber formation. In particular, the polyelectrolyte solutions formed nano-scale electrospun fibers with an average fiber diameter 2 to 3 orders of magnitude smaller than neutral polymer solutions of equivalent viscosity and C/Ce. This was attributed to the very high electrical conductivity of the polyelectrolyte solutions, which imparted a high degree of charge repulsion in the electrospinning jet and increased the extent of plastic stretching in the polymer filament. In fact, the average diameter of the polyelectrolyte fibers under certain conditions was less than 100 nm, which makes them good candidates for protective clothing applications due to their high specific surface area. Moreover, the neutral polymer solution electrospinning behavior was recovered after the addition of NaCl, which screened the electrostatic charge repulsions along the polyelectrolyte main chain. Finally, electrospun, biocompatible phospholipid membranes were produced from solutions of entangled worm-like lecithin micelles. This is the first example of successfully electrospinning low molar mass, amphiphilic compounds into uniform fibers. Electrospinning the phospholipid worm-like micelles into nonwoven fibrous mats will afford direct engineering of bio-functional, high surface area membranes without the use of multiple synthetic steps, complicated electrospinning setups, or post processing surface treatments. / Ph. D.
3

Effects of Functionality and Charge in the Design of Acrylic Polymers

Brown, Rebecca Huyck 29 September 2009 (has links)
Use of a mixed triisobutylaluminum/1,1-diphenylhexyllithium intiator enabled the anionic polymerization of methyl methacrylate at room temperature, resulting in narrow molecular weight distributions and syndiorich structures. Polymerizations were controlled above Al:Li = 2, and control significantly decreased at elevated temperatures above 25 °C. A significant increase in Tg with increasing control of syndiotacticity demonstrated the ability to tailor polymer properties using this technique. Analysis with MALDI-TOF/TOF spectroscopy revealed the dominance of a back-biting side reaction at elevated temperatures. Hydroxy-functional random and block copolymers of n-butyl acrylate (nBA) and 2-hydroxyethyl acrylate were synthesized using nitroxide mediated polymerization. Controlled polymerization was demonstrated, resulting in narrow polydispersities and linear molecular weight vs. conversion plots. In situ FTIR spectroscopy monitored the polymerizations and revealed pseudo first order rate kinetics for random copolymerizations. Protection of the hydroxyl using trimethylsilyl chloride alleviated isolation issues of amphiphilic polymer products. For the first time zwitterion-containing copolymers were electrospun to form nanoscale fibers with diameters as low as 100 nm. Free radical copolymerization of nBA and sulfobetaine methacrylamide produced zwitterionic copolymers with 6-13 mol % betaine. Dynamic mechanical analysis revealed a rubbery plateau and biphasic morphology similar to ionomers. Electrospinning from chloroform/ethanol solutions (80/20 v/v) at 2-7 wt % afforded polymeric fibers at viscosities below 0.02 Pa™s, which is the lowest viscosity observed for fiber formation in our laboratories. We hypothesized that intermolecular interactions rather than chain entanglements dominated the electrospinning process. Solution rheology of zwitterionic copolymers containing 6 and 9 mol % sulfobetaine methacrylate functionality revealed two concentration regimes with a boundary at ~1.5 – 2.0 wt %, regardless of molecular weight. This transition occurred at an order of magnitude lower specific viscosity than the entanglement concentration (Ce) for poly(nBA), and correlated to the onset of fiber formation in electrospinning. Comparison to existing models for polymer solution dynamics showed closest agreement to Rubinstein's theory for associating polymers, in support of our hypothesis that zwitterionic interactions dominate solution dynamics. The effect of ionic liquid (IL) uptake on mechanical properties and morphology of zwitterionic copolymers was explored using 1-ethyl-3-methylimidazolium ethylsulfate (EMIm ES). Dynamic mechanical analysis and impedance spectroscopy revealed a significant change in properties above a critical uptake of ~10 wt % IL. X-ray scattering revealed a significant swelling of the ionic domains at 15 wt % IL, with a 0.3 nm-1 shift in the ionomer peak to lower scattering vector. Results indicated the water-miscible IL preferentially swelled ionic domains of zwitterionic copolymers. / Ph. D.

Page generated in 0.1023 seconds