• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chlorometallate extraction (base metals)

Ellis, Ross Johannes January 2009 (has links)
The work outlined in this thesis was sponsored, in part, by Anglo American and concerns the development of new technologies to achieve the concentration and separation of base metal values in chloride hydrometallurgical circuits. New processes for the production of zinc, cobalt and nickel aim to use solvent extraction to achieve the separation of metal values in highly concentrated acid chloride feeds containing iron and this thesis involves new extractants for potential use in these circuits. Anion exchange solvent extraction was chosen as the most practical approach and so a range of new reagents are described which remove zinc(II), cobalt(II) and iron(III) chlorometallates from acid chloride solutions via the reaction: nL(org) + nH+ + MClx n- [(LH)nMClx](org) Chapter 1 reviews the literature which concerns base metal chloride hydrometallurgy, presents a range of commercial processes and discusses the chemistry which underpins them. This chapter also outlines the new Anglo American circuits and the general approach to the design of base metal chlorometallate extractants. In Chapter 2, the analytical methods are discussed. These methods include the solvent extraction experiments that were used to define the behaviour of the new ligands and the techniques that were employed to examine the interactions between an extractant and a chlorometallate anion. Chapter 3 presents a series of five new amido-functionalised pyridine reagents that were designed to investigate the affect of hydrogen bond donor functionality on the extraction of zinc, cobalt and iron chlorometallates. The pyridine nitrogen atom is sterically hindered in the new reagents to suppress formation of inner-sphere complexes. Solvent extraction performance was found to vary considerably with hydrogen bond donor functionality and ligand structure. The ligand 2-(4,6-di-tertbutylpyridin- 2-yl)-N,N’-dihexylmalonamide (L2) was the strongest and most efficient extractant in this series and this was attributed to a ‘proton chelate’ six-membered ring interaction between the malonamide oxygens and the protonated pyridine nitrogen that resulted in a pre-organised array of N-H and C-H donors that could interact favourably with the chlorometallate anion. Chapter 4 explores a series of six new tertiary amine-based ligands which contain varying amido-functionality, e.g. 3-(di-2-ethylhexylamino)-N-hexylpropanamide (MAA). Zinc, cobalt and iron chlorometallate extraction studies show the amide and malonamide-functionalised ligands are notably stronger than the tertiary alkylamine control, tris-2-ethylhexylamine (TEHA). Platinum(IV) extraction is also discussed, showing that some of the new reagents are more efficient than the tren-based ligands previously described,{Bell Katherine, 2008 #93} which were the most efficient known. The enhanced extraction performance of the new ‘MAA-type’ ligands was again attributed to the formation of a ‘proton chelate’ six-membered ring forming [(LH)2MCl4] assemblies in the organic phase. Conditions have been identified which would allow separation of Fe(III), Co(II) and Zn(II) in circuits which use the ‘MAAtype’ reagents. Chapter 5 explores a series of three new malonamide reagents which contain varying alkyl-chain functionality, e.g. N,N’-dimethylhexylpentadecylmalonamide (M1), which are thought to extract chlorometallate anions via protonation of the carbonyl oxygens. Zinc, cobalt and iron chlorometallate extraction studies demonstrate that the malonamide ligands show high efficiency and selectivity for iron over zinc and cobalt. Performance as chlorometallate extractants was found to vary considerably with ligand structure and hydrogen bond donor functionality in all three ligand series, with a number of ligands showing potential for commercial application. Analysis of anion-host interactions suggests that chlorometallate binding in the organic phase probably proceeds via an array of both N-H and C-H weak hydrogen bonding interactions between the extractant and the outer-sphere of the metallate complex.
2

Designing reagents for the solvent extraction of critical metal resources

Doidge, Euan Douglas January 2018 (has links)
The work in this thesis aims to develop new systems for the more efficient recovery of metals from aqueous solution using solvent extraction. Understanding the underlying coordination chemistry to improve hydrometallurgical methods is crucial in order to meet the demand for critical metals for use in modern technologies, reduce the environment impact of recovery from primary mining deposits, and recycle valuable metals from secondary sources (e.g. mobile phones, WEEE). Chapter 2 examines the use of a simple primary amide that can load gold and other chloridometalates into a toluene phase through an outer-sphere mechanism. The loading of a variety of metals/metalloids from varying [HCl] is reported, highlighting the selectivity for gold over other metalates and chloride due to a combination of speciation of those metals and the relative ease of extraction of lower charged species (the Hofmeister bias). The advantages in loading/stripping, toxicity and mass balances compared to commercial alternatives are also outlined, in particular the efficacy of separating gold from a mixed-metal solution representative of those found in WEEE. The mode of action of the primary amide (and secondary/tertiary analogues) is determined using slope analysis, Karl-Fischer water determinations, NMR and MS measurements, EXAFS and computational models. The extraction occurs by the dynamic assembly of multiple amide ligands and gold metalates to generate supramolecular clusters held together through hydrogen-bonding and electrostatic interactions. The secondary and tertiary amides are found to be able to extract monoanionic metalates in a similar manner as the primary amide, although clustering occurs to a lesser extent. Whilst the secondary and tertiary amides are stronger gold extractants than the primary amide, they are not observed to be as successful when extracting from a mixed-metal solution. Instead, a 3rd phase is seen to form from these amides and some metals at higher metal concentrations, which removes the ligands from solution and prevents successful extraction of gold. Chapter 3 builds on an observation in Chapter 2 that a synergistic combination of a simple primary amide and an amine can extract chloridometalates that are typically difficult to solvent extract, such as iridium(III) and rhodium(III). These metalates, complexes with increased anionic charge and varying speciation in aqueous solution, are typically recovered last in a metal production flowsheet. The combination of a primary amide and primary amine was found to be the most effective at extracting the chloridometalates; the strength and strippability of the system is of particular interest in the context of rhodium(III) recovery as this metal currently is not extracted in commercial circuits. The mode of action of the system is investigated using similar techniques to Chapter 2, and reveals that the amine is the more important component of the synergistic mixture compared to the amide, with an improvement in extraction observed when both components are present. Rh(III) is extracted as a mixture of RhCl6 3– and RhCl5(OH2)2– complexes, dependent on the initial [HCl] concentration and the age of the initial aqueous solution. Chapter 4 investigates the feasibility of the recovery of lanthanides as anionic metalates from chloride-, nitrate- or sulfate-rich feeds. Reagents that have been found to be strong chloridometalate extractants, fragmented versions of these, and ‘classic’ commercial outer-sphere reagents are studied. The variations of ligand, anion type and concentration, proton concentration and solvent for the extraction of lanthanides is investigated. However, despite these permutations, no extraction of lanthanides is observed due to the difficulty in extracting more highly hydrated species and the lack of stability of the metalates in aqueous solution.

Page generated in 0.1543 seconds