• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A genetic analysis of somitogenesis in the Medaka (Oryzias latipes) / Genetische Analyse der Somitogenese in Medaka (Oryzias latipes)

El-Masri, Harun January 2005 (has links) (PDF)
Somites are repeated epithelial segments that are generated in a rhythmic manner from the presomitic mesoderm (PSM) in the embryonic tailbud. Later, they differentiate into skeletal muscle, cartilage and dermis. Somitogenesis is regulated by a complex interplay of different pathways. Notch/Delta signaling is one of the pathways well characterized in zebrafish through mutants affected in its different components. Previous work in mouse, chicken and zebrafish has shown that also additional components are required during somitogenesis, most importantly through an FGF and Retinoic acid (RA) gradient, as well as Wnt signaling. However, no zebrafish mutants with defects in these pathways showing specific somite malformations are described. This was explained by functional redundancies among related genes that have resulted from a whole genome duplication which occurred in a teleost fish ancestor 350 million years ago. As distinct duplicates exist in different teleost species, a large scale mutagenesis screen in the medaka (Oryzias latipes) has been performed successfully in Kyoto, Japan. I analyzed nine of the isolated medaka mutants that show variable aspects of somitic phenotypes. This includes a complete or partial loss of somite boundaries (e.g. bms and sne), somites with irregular sizes and shapes (e.g. krz and fsl) or partially fused and enlarged somites (e.g. dpk). Although some of these medaka mutants share characteristics with previously described zebrafish somite mutants, most of the mutants represent unique phenotypes, not obtained in the zebrafish screens. In-situ hybridization analyses with marker genes implicated in the segmentation clock (e.g. her7), establishment of anterior-posterior (A-P) polarity (e.g. mesp) and differentiation of somites (e.g. myf5, lfng) revealed that the medaka mutants can be separated into two classes. Class I shows defects in tailbud formation and PSM prepatterning, and lateron somite boundary formation was impaired in these mutants. A unique member of this class with a novel phenotype is the doppelkorn (dpk) mutant that has single fused or enlarged somites. This phenotype has not been reported till now in zebrafish somite mutants. In-situ analyses on dpk showed that stabilization of the cyclically expressed somitogenesis clock genes must be affected in this mutant. This is accompanied by a disrupted regulation of A-P polarity genes like mesp. This suggests that dpk is a mutant deficient in the wave front, which is necessary for the down-regulation of oscillating genes in the anterior PSM. Furthermore, as the initiation of oscillation of all three cyclic her genes was unaffected in dpk embryos, I could exclude that this mutant in affected in the Notch/Delta pathway. Another mutant that belongs to this class is the samidare (sam) mutant. Morphologically, sam mutants are similar to zebrafish after eight (aei). In both cases, the first 7-9 somites are formed properly, but after this somite formation ceases. Different to the situation in aei, sam mutant embryos presented an additional defect in the mid-hindbrain boundary (MHB) region. Similar MHB defects were described in the zebrafish fgf8 mutant acerebellar (ace). In ace zebrafish mutant, somites were only slightly defective, although FGF signaling has been shown to be important for somite formation in chicken, mouse and zebrafish. This was explained by functional redundancy between fgf8 and fgf24 ligands in the tailbud of zebrafish. Thus, it is interesting to suggest that the sam mutant, based on the parallel defects in somites and MHB, is a potential member of the FGF signaling pathway muatnts. It was shown that FGF plays a crucial role during MHB formation in medaka. In addition, I showed that fgf8 acts non-redundantly during tailbud formation and somitogenesis in medaka. Furthermore, I showed that FGF signaling regulates somite size also in medaka and that fgfr1 is the only FGF receptor expressed in the tailbud and somites. In class II medaka somite mutants, PSM prepatterning appears normal, whereas A-P polarity, boundary formation, epithelialization or the later differentiation of somites appears to be affected. Such mutants have not been isolated so far in zebrafish, mice or chicken. Therefore, medaka class II somite mutants seem to be a novel group of mutants that opens new perspectives to analyze A-P polarity regulation, determination and boundary formation in the presence of a normally functioning clock in the PSM. Identifying the encoding genes for all analyzed medaka somite mutants will contribute to the understanding of the molecular interactions of different signaling pathways involved during somitogenesis, and is expected to result in the identification of new components. / Die Somitogenese stellt einen entscheidenden Prozess bei der Entwicklung von Wirbeltierembryonen dar. Somiten sind transiente Strukturen, die sich im Verlauf der Embryonalentwicklung zu Skelettmuskulatur, Dermis und Wirbelkörper differenzieren. Somiten entstehen in einem sich regelmäßig wiederholenden Zyklus aus Stammzellen des präsomitischen Mesoderms (PSM), einer Wachstumszone am caudalen Ende des Embryos. Ein wichtiger Bestandteil der Somitogenese ist ein molekularer Oszillator, das so genannte „Segmentierungs-Uhrwerk“. Die periodische Segmentierung des präsomitischen Mesoderms wird reguliert durch eine Reihe komplexer Interaktionen von unterschiedlichen Signale wegen. Der Notch/Delta Signalweg spielt dabei eine zentrale Bedeutung, da hierbei Komponenten entdeckt wurden, die während der Somitogenese zyklisch im PSM exprimiert werden. Außer dem Notch/Delta Signalweg spielen auch ein FGF und Retinolsäure Gradient, sowie Wnt Signale eine wichtige Rolle bei der Somitogenese. Trotz mehrerer Mutagenese Screens im Zebrafisch wurden bislang keine Mutanten im FGF oder Wnt Signalweg entdeckt, die einen spezifischen Somiten Defekt besitzen. Die wurde durch eine funktionelle Redundanz unterschiedlicher Gene erklärt, die durch eine Duplikation im Genom von Teleostieren vor 350 Millionen Jahren enstanden ist. Da unterschiedliche Duplikate in verschiedenen Fischspezies existieren, wurde in den letzten Jahren ein grosser Mutagenese Screen bei Medaka (Oryzias latipes) in Kyoto, Japan durchgeführt. In meiner Arbeit habe ich neue Somitogenese Mutanten aus dieser Screen isoliert und Phänotypisch charakterisiert. Die neun isolierten Mutanten zeigten unterschiedliche Somiten Phänotypen. Einige Mutanten hatten wenige oder gar keine Somitengrenzen (z.B bms oder sne), andere hatten unregelmäßige Somiten Formen (z.B. krz oder fsl) oder unterschiedlich große Somiten (z.B dpk). Manche dieser Medaka wiesen Änlichkeiten Mutanten zu im Zebrafisch beschriebenen Somiten Mutanten auf. Die Mehrzahl der Mutanten zeigten jedoch Phänotypen, die bis jetzt noch nicht in Zebrafisch Screens gefunden worden. In-Situ Analysen mit Hilfe unterschiedlicher, neu isolierter Somitenmarker, wie z.B. her7 einem Bestandteil des molekularen Oszillators, mesp einem anterior-posterioren Gen oder den Somitendifferenzierungsgenen lfng oder myf5 erlaubten, die Medaka Mutanten in zwei unterschiedliche Gruppen zuzuordnen. Gruppe I zeigt Defekte in der Bildung der Schwanzknospe und der Musterbildung im PSM. Ein besonderes Beispiel dieser Gruppe ist die Mutante doppelkorn (dpk), die einen bislang nicht beschriebenen Somitenphänotyp besitzt. In-situ Analysen von dpk zeigten, dass zyklische Gene im anterioren PSM dieser Mutante nicht stabilisiert werden und auch A-P Polaritätsgene fehlerhaft reguliert werden. Das deutet darauf hin, dass in der dpk Mutante ein Faktor der sogenannten „Wavefront“ betroffen sein könnte, der wichtig ist für die Regulation von oszillierenden Genen im anterioren PSM ist. Ich konnte zeigen, daß der wichtige Notch/Delta Signalweg in dieser Mutante nicht betroffen ist, weil alle unterschiedlichen zyklischen Gene, her1, her5 und her7, eine normale dynamische initiation ihrer Expression zeigten. Gruppe II Mutanten zeigen Defekte bei der Bildung der Somitengrenzen und Epithelialisierung der Somiten trotz normales, Musterbildung im PSM. Solche Mutanten wurden bislang weder in Zebrafisch, noch in Maus oder Hühnchen gefunden. Deshalb sollten nach der molekularen Identifiezierung der mutierten Gene neue Faktoren erhalten werden, die vor allem für die Regulation später Somitogenese-phasen wichtig sind.

Page generated in 0.0415 seconds