• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 4
  • 4
  • Tagged with
  • 24
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stabilisation of the biosensor properties of protoplasts used as the biological units of the protoplast biosensor

Gross, Kerstin. Unknown Date (has links) (PDF)
University, Diss., 2001--Bonn.
12

QTL mapping of resistance to Sclerotinia sclerotiorum (Lib.) De Bary in sunflower (Helianthus annuus L.)

Micic, Zeljko, January 1900 (has links) (PDF)
Hohenheim, Univ., Diss., 2005.
13

Der Einfluss von Ölgehalt und Fettsäuremuster auf die Lagerfähigkeit von Saatgut

Ghiasvand Ghiasi, Kambiz, January 2007 (has links)
Hohenheim, Universiẗat, Diss., 2007.
14

Genetic transformation of two high oleic Helianthus annuus L. genotypes using different transformation methods

Mohamed, Sherin. Unknown Date (has links) (PDF)
University, Diss., 2005--Bonn.
15

Importance of nutrient supply (N, P, K) for yield formation and nutrient use efficiency of safflower (Carthamus tinctorius L.) compared to sunflower (Helianthus annuus L.) including an assessment to grow safflower under north German conditions

Abbadi, Jehad January 2007 (has links)
Zugl.: Kiel, Univ., Diss., 2007
16

Die Signaltransduktion über Inositol-1,4,5-trisphosphat in Sonnenblumen-Hypokotylprotoplasten am Beispiel des Schwerkraftreizes

Müller, Georg. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Bonn.
17

Charakterisierung pflanzlicher in vitro Kulturen am Beispiel Sonnenblume

Geipel, Katja, Bley, Thomas, Steingroewer, Juliane 22 February 2017 (has links) (PDF)
Wirkstoffgewinnung mittels chemischer Synthese führt oft zu Stereoisomeren, welche aufwendig getrennt werden müssen und manche Moleküle sind nur sehr kostenintensiv oder gar nicht darstellbar. Landwirtschaftliche Gewinnung bedeutet Nachteile wie Schadstoffeinsatz und großer Flächenbedarf. Der Einsatz von pflanzlichen Zell- und Gewebekulturen überwindet die genannten Hürden [1, 2]: mit Methoden der Pflanzenbiotechnologie ist es möglich, pflanzliche Inhaltsstoffe in ihrer natürlichen, bioaktiven Form das ganze Jahr über unabhängig von biotischen/abiotischen Umweltfaktoren bei gleichbleibender Qualität und Quantität zu produzieren [3, 4]. Suspensionskulturen und hairy roots gelten momentan als die in vitro-Kulturtypen mit dem größten biotechnologischen Potential. Erstere sind in Flüssigmedium kultivierte Kalluszellen. Bei Kallus handelt es sich um undifferenzierte Pflanzenzellen, welche tumorartig wachsen und durch Zugabe von Pflanzenhormonen an der Differenzierung gehindert werden. Hairy roots entstehen durch Infektion eines Pflanzenteils mit dem Bodenbakterium Agrobacterium rhizogenes. Die so erhaltene Haarwurzelkultur kann ohne Hormonzusatz vermehrt werden, ihre Morphologie erfordert aber häufig eine Anpassung bestehender Kultivierungsgefäße [2, 5]. / In advance of industrial applications of in vitro plant cell or tissue cultures e.g., as bioactive ingredients for pharmaceuticals, an intense characterization concerning growth and productivity has to be performed. Innovative respiration measurement techniques in shake flask scale were applied to investigate and compare heterotrophic, photomixotrophic and hairy root cultures of sunflower. Furthermore, the qualification of RAMOS for screening of plant in vitro cultures is discussed.
18

Untersuchungen zum radialen Abscisinsäure- und Wassertransport in Wurzeln von Helianthus annuus L. und Zea mays L.

Hose, Eleonore January 2000 (has links) (PDF)
Mit den Experimenten dieser Arbeit konnte erstmals gezeigt werden, dass ein Phytohormon wie Abscisinsäure mit dem "Solvent-drag" des Wasserflusses apoplastisch durch den Wurzelzellwandbereich in die Xylemgefäße transportiert werden kann. Es konnte ein Bypass-Fluss für ABA durch den gesamten Zellwandapoplasten, auch durch lipophile Barrieren wie Exo- und Endodermis nachgewiesen werden. Dies ist durch die speziellen Moleküleigenschaften von Abscisinsäure möglich: (i) der geringe Durchmesser des Moleküls (8 - 11 nm) und (ii) die hohe Lipophilie von ABA bei schwach sauren pH-Werte. Mit einer Penetration apoplastischer Barrieren ist demnach zu rechnen. Weiterhin wurde gezeigt, dass die Ausbildung solcher lipophilen Zellwandnetze einen signifikanten Einfluss auf den apoplastischen ABA-Transport besitzt. Die Ausbildung einer Exodermis in Mais, wie sie unter natürlichen Bedingungen zu beobachten ist, konnte den ABA-Fluss in das Xylem um die Faktoren 2 bis 4 reduzieren. Da gleichzeitig eine Verminderung der hydraulischen Wurzelleitfähigkeit um denselben Betrag auftrat, blieb das Wurzel-Spross-ABA-Signal, die Phytohormonkonzentration, im Xylem gleich. Die zu den Stomata geleitete Information über den Wasserzustand der Wurzel änderte sich also nicht. Im natürlichen System ist sogar eine Verstärkung des Signals zu erwarten, da eine Exodermis nicht als Aufnahme-Barriere für gewebeproduzierte ABA wirkt. Gleichzeitig verringert sie den Verlust von apoplastischer ABA an die Rhizosphäre. Außerdem wird der Wasserverlust aus dem Gewebe durch eine Exodermis signifikant reduziert wird. Somit sind solche Wurzeln gut an die Bedingungen eines eintrocknenden Bodens angepasst. Apoplastische Barrieren sind demnach, neben membran-lokalisierten Tranportern, wichtige Parameter für die Beurteilung von Wurzeltransporteigenschaften für Wasser und darin gelöste Substanzen. Der Beitrag der apoplastischen Komponente zum Gesamt-ABA-Transport ist abhängig von der untersuchten Pflanzenart, der aktuellen Transpirations- oder Wasserflussrate und von Umwelteinflüssen wie erhöhter ABA-Konzentration im Wurzelgewebe (z.B. durch Trockenstress), pH-Wert der Rhizosphäre und den Ernährungsbedingungen der Pflanze. Erhöhter radialer Wasserfluss, erhöhte ABA-Wurzelgewebegehalte und niedriger pH-Wert der Rhizosphäre verstärken den apoplastischen Bypass-Fluss unter physiologischen Bedingungen. Geringe Wassertransportraten, niedrige ABA-Konzentrationen im Gewebe, alkalische pH-Werte der Rhizosphäre und Ammoniumernährung verstärken dagegen den symplastischen Beitrag zum ABA-Transport. In der vorliegenden Arbeit konnten die sich widersprechenden Theorien bezüglich des ABA-Effektes auf die hydraulische Leitfähigkeit von Wurzeln erklärt werden. ABA erhöht über einen Zeitraum von 2 Stunden die Zellleitfähigkeit (Lp) mit einem Maximum 1 Stunde nach ABA-Inkubation. Dies wirkt sich in einem verstärktem Lpr von intakten Wurzelsystemen aus, das einem ähnlichen Zeitmuster folgt. Pflanzen sind demnach in der Lage, mittels ABA den zellulären Wassertransportweg reversibel zu optimieren, um so unter mildem Trockenstress, wie er in einem gerade eintrocknenden Boden auftritt, die Pflanze mit ausreichend Wasser zu versorgen. Tritt ein länger andauernder Wassermangel ein, versperrt die Pflanze diesen Weg wieder. Dieser transiente Effekt erklärt auch die aus der Literatur bekannten stimulierenden und inhibierenden ABA-Wirkungen. Durch den verstärkten Wasserfluss zu Beginn der Stresssituation erzeugt ABA auf diese Weise ein sich selbst verstärkendes, wurzelbürtiges Hormonsignal in den Spross. Das Blatt erreicht in effektiver Weise eine ABA-Menge, die ausreichend ist, um die Stomata zu schließen. Es folgt eine Reduktion der Transpiration. Eine weiter andauernde Erhöhung des symplastischen Wassertransportweges wäre ohne physiologische Bedeutung. Regulierende Membranstrukturen für diesen Vorgang könnten ABA-sensitive Wasserkanäle (Aquaporine) der Plasmamembran sein. Es wurde gezeigt, dass der Rezeptor für diesen Vorgang innerhalb von corticalen Maiswurzelzellen lokalisiert und hochspezifisch für (+)-cis-trans-ABA ist. Die Signaltransduktion für diesen Kurzzeiteffekt erfolgt nicht mittels verstärkter Aquaporintranskription, könnte aber über ABA-induzierte Aktivierung (Phosphorylierung), oder Einbau von Aquaporinen in die Zellmembran ablaufen. Der Abscisinsäure-Transport ist ein komplexer Vorgang. Er wird beeinflusst durch Umwelteinflüsse, Wurzelanatomie, ist gekoppelt mit dem Wasserfluss und durch sich selbst variierbar. Herkömmliche Vorstellungen einer simplen Hormondiffusion können diesen regulierbaren Vorgang nicht mehr beschreiben. Pflanzen besitzen ein ABA-Transportsystem, das schnell, effektiv und an sich verändernde Umweltbedingungen adaptierbar ist. / The experimental work of the presented study has been able to show, for the first time, that a phytohormone like ABA can be transported apoplastically into xylem vessels by solvent-drag of the water flow. For ABA, a bypass-flow throughout the whole cell wall apoplast, including lipophilic barriers like exo-and endodermis, could be demonstrated. This may be due to the particular properties of the 264 Da ABA-molecule: (i) the small diameter of the molecule (8 to 11 nm) and (ii) the high lipophily of the uncharged ABA under physiological conditions. Conclusively, a penetration of apoplastic barriers is supposed to be possible. Furthermore, this study shows the development of such lipophilic cell wall-nets should have significant influence on apoplastic ABA-transport-properties. The formation of an exodermis in maize, as it occurs under natural conditions, was able to reduce the ABA-flow into the xylem by factors of 2 up to 4. As, simultaneously, the root-hydraulic conductivity was decreased by the same rate, the root-to-shoot ABA-signal, the phytohormone concentration in the xylem, remained constant. The information about the root-water-status addressed to the guard cells has not changed, therefore. In the natural environment even an increase of this signal is to be expected, as exodermal layers are no uptake-barriers for the tissue-produced ABA. On the contrary, an exodermis will retard the leakage of ABA to the rhizosphere. At the same time, roots are more effectively adapted to drought because water loss from exodermal roots is also reduced significantly. Apoplastic barriers are, therefore, beside membrane-located transport-proteins, the important parameters for determining root-transport-properties for water and solutes. The contribution of the apoplastic component to the entire ABA-transport depends on the plant species investigated, the actual transpiration- or water-flow rate and on external conditions like high ABA-concentrations in the root tissue (e.g. after drought), pH of the rhizosphere, and the nutrient status of the plant. Increased radial water-flow, raised ABA-contents of the root tissue, and a low pH of the rhizosphere intensified the apoplastic bypass-flow under physiological conditions. Low water-transport rates, low ABA tissue-contents, alkaline pH-values in the rhizosphere and ammonium as the only N-source, on the other hand, increased the symplastic contribution to the ABA-transport. In the presented study, the controversal dispute concerning the ABA-effect on root hydraulic conductivity could be settled. ABA raises cell hydraulic conductivity (Lp) for 2 h with a maximum after 1 h of ABA-application. This results in an increased Lpr (hydraulic conductivity of intact root systems), directed by a similar time-pattern. So, by ABA plants are able to reversibly optimise the cellular transport path of water to support the plant under mild drought stress with sufficient water. However, if water deficiency continues, plants again close this additional symplastic pathway. This transient ABA-effect explains both stimulating and inhibiting ABA-actions, as known from literature. At the beginning of a stress situation ABA induces by an increased water flow a self-intensifying root-to-shoot-signal. Thus, in an effective way the leaf achieves a sufficient amount of ABA in order to close the stomata. A reduction in transpiration follows. Further continuous stimulation of the symplastic water transport path would be without any physiological meaning. Membrane structures, responsible for regulating this mechanism may be ABA-responsive water channels (aquaporins) in the plasma membrane. It has been shown that the receptor for regulating these channels is localised inside the cortical cells of maize roots and highly specific for (+)-cis-trans-ABA. Signal transduction for this short-time effect is not mediated by intensified aquaporin-transcription, but there may be evidence of ABA-induced regulation by channel activation (phosphorylation) or by incorporation of aquaporins into cell membranes. The transport of abscisic acid is a complex process modified by environmental conditions, root anatomy, coupled with the water flow, and variable by itself. Customary ideas about a simple hormone diffusion are not apt to describe this complex process anymore. Plants possess an ABA-transport system, which is fast, effective, and adaptable to changing environmental conditions.
19

A review of the psychological process of forgiveness within Simon Wiesenthal’s ‘The Sunflower’

Van der Heyden, Yoav 12 1900 (has links)
Thesis (MA (Psychology))--University of Stellenbosch, 2005. / This paper examines the notion of forgiveness by highlighting the personal psychological experience that may be discarded in the moral and political debate. Faced with his dilemma of whether or not to forgive the heinous crimes of a dying man, Simon Wiesenthal’s invites readers of his personal story in The Sunflower to ask themselves what they would have done in his place. Most respondents have considered this a moral, theological or political issue. This paper chooses to view his question from a psychological perspective. By analysing his autobiographical account in The Sunflower and process model of forgiveness developed by Enright and the Human Development Study Group (1991, 1994), Wiesenthal’s psychological responses have been investigated on behavioural, cognitive and emotional levels.
20

Charakterisierung pflanzlicher in vitro Kulturen am Beispiel Sonnenblume

Geipel, Katja, Bley, Thomas, Steingroewer, Juliane January 2014 (has links)
Wirkstoffgewinnung mittels chemischer Synthese führt oft zu Stereoisomeren, welche aufwendig getrennt werden müssen und manche Moleküle sind nur sehr kostenintensiv oder gar nicht darstellbar. Landwirtschaftliche Gewinnung bedeutet Nachteile wie Schadstoffeinsatz und großer Flächenbedarf. Der Einsatz von pflanzlichen Zell- und Gewebekulturen überwindet die genannten Hürden [1, 2]: mit Methoden der Pflanzenbiotechnologie ist es möglich, pflanzliche Inhaltsstoffe in ihrer natürlichen, bioaktiven Form das ganze Jahr über unabhängig von biotischen/abiotischen Umweltfaktoren bei gleichbleibender Qualität und Quantität zu produzieren [3, 4]. Suspensionskulturen und hairy roots gelten momentan als die in vitro-Kulturtypen mit dem größten biotechnologischen Potential. Erstere sind in Flüssigmedium kultivierte Kalluszellen. Bei Kallus handelt es sich um undifferenzierte Pflanzenzellen, welche tumorartig wachsen und durch Zugabe von Pflanzenhormonen an der Differenzierung gehindert werden. Hairy roots entstehen durch Infektion eines Pflanzenteils mit dem Bodenbakterium Agrobacterium rhizogenes. Die so erhaltene Haarwurzelkultur kann ohne Hormonzusatz vermehrt werden, ihre Morphologie erfordert aber häufig eine Anpassung bestehender Kultivierungsgefäße [2, 5]. / In advance of industrial applications of in vitro plant cell or tissue cultures e.g., as bioactive ingredients for pharmaceuticals, an intense characterization concerning growth and productivity has to be performed. Innovative respiration measurement techniques in shake flask scale were applied to investigate and compare heterotrophic, photomixotrophic and hairy root cultures of sunflower. Furthermore, the qualification of RAMOS for screening of plant in vitro cultures is discussed.

Page generated in 0.0396 seconds