Spelling suggestions: "subject:"sont deposition"" "subject:"soit deposition""
1 |
Convection, Diffusion, Thermophoresis and Electric Field Effects on Diesel Soot Deposition in a Cooled Exhaust ChannelDela Cruz, Emmanuel 10 1900 (has links)
New demands and tighter government legislations on greenhouse gases and pollutants, especially for those produced by diesel engines, there has been much focus on developing more efficient diesel engine designs and pollution control devices. There are several pollution control devices currently being implemented in diesel engines such as, diesel particulate filters, selective reduction catalyst, electrostatic filters, exhaust gas recirculation systems, etc. Diesel particulate matter is of particular importance especially when deposited because of its corrosive and thermal insulating nature. There are many complex mechanisms involved in fine particle deposition. This study will focus on the main deposition mechanisms such as
convection, diffusion, thermophoresis and electric field effects. The objective of this study was to evaluate experimentally the mechanisms of diesel soot deposition in a rectangular (RWCS) and cylindrical (CWCS) wall cooled sections to evaluate thermophoretic effects. In additional, the coaxial cylindrical wall cooled section with additional with coaxial wire electrode was used to study applied electric field effect (CCWCSE) on soot deposition. A non-destructive Real-Time Neutron Radiography technique was used to evaluate the soot deposition thickness profiles inside the cooled sections. The experiments were conducted using diesel engine exhaust from a single cylinder diesel engine operated at fixed 2.4kW, at a exhaust gas mass flow rate of 20 kg/hr with exposure times ranging 0 to 3hrs, coolant temperatures from 20 to 40°C and exhaust gas temperatures from 250 and 270°C. The resulting Reynolds Number based on the mass flow rate per cross-sectional area times the hydraulic diameter was 6300 for the RWCS and 9000 for the CWCS and CCWCSE. The results show that for the RWCS, the soot deposition pattern qualitatively matched the cooling water channel outer wall surface
temperature profile along with thicker deposition at the entrance region due to convection effects. For the ewes, the deposition was more uniformly distributed throughout the device. It was observed for both devices that as the mean soot deposition thickness increases with increasing exhaust gas exposure time and decreasing wall cooling temperature. Finally the experimental results for the CCWCSE shows that the soot deposition was enhanced by a positive or negative applied electric field. / Thesis / Master of Applied Science (MASc)
|
2 |
Forward and inverse modeling of fire physics towards fire scene reconstructionsOverholt, Kristopher James 06 November 2013 (has links)
Fire models are routinely used to evaluate life safety aspects of building design projects and are being used more often in fire and arson investigations as well as reconstructions of firefighter line-of-duty deaths and injuries. A fire within a compartment effectively leaves behind a record of fire activity and history (i.e., fire signatures). Fire and arson investigators can utilize these fire signatures in the determination of cause and origin during fire reconstruction exercises. Researchers conducting fire experiments can utilize this record of fire activity to better understand the underlying physics. In all of these applications, the fire heat release rate (HRR), location of a fire, and smoke production are important parameters that govern the evolution of thermal conditions within a fire compartment. These input parameters can be a large source of uncertainty in fire models, especially in scenarios in which experimental data or detailed information on fire behavior are not available. To better understand fire behavior indicators related to soot, the deposition of soot onto surfaces was considered. Improvements to a soot deposition submodel were implemented in a computational fluid dynamics (CFD) fire model. To better understand fire behavior indicators related to fire size, an inverse HRR methodology was developed that calculates a transient HRR in a compartment based on measured temperatures resulting from a fire source. To address issues related to the uncertainty of input parameters, an inversion framework was developed that has applications towards fire scene reconstructions. Rather than using point estimates of input parameters, a statistical inversion framework based on the Bayesian inference approach was used to determine probability distributions of input parameters. These probability distributions contain uncertainty information about the input parameters and can be propagated through fire models to obtain uncertainty information about predicted quantities of interest. The Bayesian inference approach was applied to various fire problems and coupled with zone and CFD fire models to extend the physical capability and accuracy of the inversion framework. Example applications include the estimation of both steady-state and transient fire sizes in a compartment, material properties related to pyrolysis, and the location of a fire in a compartment. / text
|
3 |
Investigation of Enhanced Soot Deposition on Smoke Alarm HornsPhelan, Patrick 07 January 2005 (has links)
Post-fire reconstruction often includes the analysis of smoke alarms. The determination of whether or not an alarm has sounded during a fire event is of great interest. Until recently, analysis of smoke alarms involved in fires has been limited to electrical diagnostics, which, at best, determined whether or not a smoke alarm was capable of alarm during the fire event. It has subsequently been proposed that evaluation of the soot deposition around a smoke alarm horn can be used to conclude whether a smoke alarm has sounded during a fire event. In order to evaluate the effectiveness of using enhanced soot deposition patterns as an indication of smoke alarms sounding within a fire event, four test series were undertaken. First, a population of smoke alarms representative of the available market variety of horn configurations was selected. This population was subjected four test series. Test Series 1 consisted of UL/EN style experiments with fuel sources that included flaming polyurethane, smoldering polyurethane, flaming wood crib, and flaming turpentine pool. In Test Series 2, alarms were exposed to "nuisance" products from frying bacon, frying tortillas, burnt toast, frying breading, and airborne dust. Test Series 3 exposed the alarms to the following fire sources: smoldering cable, flaming cable, flaming boxes with paper, and flaming boxes with plastic cups. Test Series 4 included new, used, and pre-exposed smoke alarms that were exposed to two larger scale fires: a smoldering transitioning to flaming cabinet/wall assembly fire and a flaming couch section. The results from all four series were used to generate a hueristic for use in evaluating alarms from fire events. These criteria were blindly tested against the population of alarms to develop a correlation between the criteria and the previously tested smoke alarms. The results support the evaluation of soot deposition on smoke alarms exposed to a fire event as a viable method to determine whether or not an alarm sounded, without false positive or negative identifications.
|
4 |
The rotating injector as a tool for exploring DI diesel combustion and emissions formation processesSjöberg, Magnus January 2001 (has links)
A diesel fuel injector has been modified to allow rotationaround its axis, driven by an electric motor. Injections at upto 6000 rpm from the rotating injector have been investigatedunder the influence of air swirl on one optical research engineand one optically accessible heavy-duty diesel engine. The experiments show that changing from a normal, staticinjection to a sweeping injection has profound effects on sprayformation, dispersion and penetration. This influences thefuel/air-mixing, autoignition, combustion rate and emissionsformation. The spray propagation is stronger influenced byinjector rotation than by air swirl. The air entrainment into the spray increases forcounter-swirl rotation of the injector and this speeds up thevaporization and decreases the formation of soot. In addition,the oxidation of soot is enhanced since the counter-swirlinjection forces the intense fuel-rich and soot containingspray core to penetrate into fresh air instead of replenishingthe rich regions in the head of the spray. Fuel accumulationalong the piston bowl wall decreases as an effect of thereduced penetration with counter-swirl injection. Altogether,this decreases the smoke emissions for low and intermediateengine loads. For the combustion system studied, counter-swirl rotation ofthe injector cannot decrease the smoke emissions at high engineload since the reduced spray penetration impairs the airutilization. Fast and efficient combustion at high loadrequires spray induced flame spread out into the squish region.Spray induced flow of cool fresh air from the bottom of thepiston bowl in towards the injector is also important for lowsoot formation rates. Co-swirl rotation of the injector reduces the airentrainment into the spray and increases the soot formation.The increased smoke and CO emissions with co-swirl injectionare also attributed to the excessively large fuel-rich regionsbuilt up against the piston bowl wall. Increased air swirl generally reduces smoke and COemissions. This is mainly an effect of enhanced burnout due tomore intense mixing after the end of fuel injection. Changes in smoke as an effect of injector rotation aregenerally accompanied with opposite, but relatively small,changes in NO. Fast and efficient burnout is important for lowsmoke emissions and this raises both the temperature andproduction of NO. NO production is strongly influenced by thein-cylinder conditions during the latter part of themixing-controlled combustion and in the beginning of theburnout. <b>Keywords:</b>diesel spray combustion, rotating injector,air swirl, air/fuel-mixing, soot, NO, CO, flame visualization,Chemkin modeling, soot deposition
|
5 |
The rotating injector as a tool for exploring DI diesel combustion and emissions formation processesSjöberg, Magnus January 2001 (has links)
<p>A diesel fuel injector has been modified to allow rotationaround its axis, driven by an electric motor. Injections at upto 6000 rpm from the rotating injector have been investigatedunder the influence of air swirl on one optical research engineand one optically accessible heavy-duty diesel engine.</p><p>The experiments show that changing from a normal, staticinjection to a sweeping injection has profound effects on sprayformation, dispersion and penetration. This influences thefuel/air-mixing, autoignition, combustion rate and emissionsformation. The spray propagation is stronger influenced byinjector rotation than by air swirl.</p><p>The air entrainment into the spray increases forcounter-swirl rotation of the injector and this speeds up thevaporization and decreases the formation of soot. In addition,the oxidation of soot is enhanced since the counter-swirlinjection forces the intense fuel-rich and soot containingspray core to penetrate into fresh air instead of replenishingthe rich regions in the head of the spray. Fuel accumulationalong the piston bowl wall decreases as an effect of thereduced penetration with counter-swirl injection. Altogether,this decreases the smoke emissions for low and intermediateengine loads.</p><p>For the combustion system studied, counter-swirl rotation ofthe injector cannot decrease the smoke emissions at high engineload since the reduced spray penetration impairs the airutilization. Fast and efficient combustion at high loadrequires spray induced flame spread out into the squish region.Spray induced flow of cool fresh air from the bottom of thepiston bowl in towards the injector is also important for lowsoot formation rates.</p><p>Co-swirl rotation of the injector reduces the airentrainment into the spray and increases the soot formation.The increased smoke and CO emissions with co-swirl injectionare also attributed to the excessively large fuel-rich regionsbuilt up against the piston bowl wall.</p><p>Increased air swirl generally reduces smoke and COemissions. This is mainly an effect of enhanced burnout due tomore intense mixing after the end of fuel injection.</p><p>Changes in smoke as an effect of injector rotation aregenerally accompanied with opposite, but relatively small,changes in NO. Fast and efficient burnout is important for lowsmoke emissions and this raises both the temperature andproduction of NO. NO production is strongly influenced by thein-cylinder conditions during the latter part of themixing-controlled combustion and in the beginning of theburnout.</p><p><b>Keywords:</b>diesel spray combustion, rotating injector,air swirl, air/fuel-mixing, soot, NO, CO, flame visualization,Chemkin modeling, soot deposition</p>
|
Page generated in 0.1105 seconds