• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

EXPERIMENTAL STUDIES ON THE DETERMINATION OF ACOUSTIC BULK MATERIAL PROPERTIES AND TRANSFER IMPEDANCE

Li, Wanlu 01 January 2014 (has links)
Soft trim absorbing parts (i.e., headliners, backwalls, side panels, etc.) are normally comprised of different layers including films, adhesives, foams and fibers. Several approaches to determine the complex wavenumber and characteristic impedance for porous sound absorbing materials are surveyed and the advantages and disadvantages of each approach are discussed. It is concluded that the recently documented three-point method produces the smoothest results. It is also shown that measurement of the flow resistance and the use of empirical equations is sufficient for many common materials. Following this, the transfer impedance of covers, adhesives, and densified layers are measured using an impedance difference approach. The transfer matrix method was then used to predict the sound absorption of a multi-layered materal which included a perforated cover, fiber layers, and an adhesive. The predicted results agree well with measurement.
2

UTILIZATION OF EMPIRICAL MODELS TO DETERMINE THE BULK PROPERTIES OF COMPRESSED SOUND ABSORPTIVE MATERIALS

Wu, Ruimeng 01 January 2017 (has links)
Empirical models based on flow resistivity are commonly used to determine the bulk properties of porous sound absorbing materials. The bulk properties include the complex wavenumber and complex characteristic impedance which can be used directly in simulation models. Moreover, the bulk properties can also be utilized to determine the normal incidence sound absorption and specific acoustic impedance for sound absorbing materials of any thickness and for design of layered materials. The sound absorption coefficient of sound absorbing materials is measured in an impedance tube using wave decomposition and the measured data is used to determine the flow resistivity of the materials by least squares curve fitting to empirical equations. Results for several commonly used foams and fibers are tabulated to form a rudimentary materials database. The same approach is then used to determine the flow resistivity of compressed sound absorbing materials. The flow resistivities of the compressed materials are determined as a function of the compression ratio. Results are then used in conjunction with transfer matrix theory to predict the sound absorptive performance of layered compressed absorbers with good agreement to measurement.
3

On the ECO2 multifunctional design paradigm and tools for acoustic tailoring

Parra Martinez, Juan Pablo January 2015 (has links)
Nowadays vehicle design paradigm influences not only the effectiveness of the different means of transport, but also the environment and economy in a critical way. The assessment of the consequences that design choices have on society at large are necessary to understand the limits of the methods and techniques currently employed. One of the mechanisms set in motion is the planned obsolescence of products and services. This has affected vehicle design paradigm in such a way that the variety in the market has shadowed the primary function of vehicle systems: the transport of persons and goods. Amongst the consequences of the expansion of such market is the exponential rise on combustion emissions to the atmosphere, which has become a great hindrance for humans health and survival of ecosystems. The development of evaluation tools for such consequences and their piloting mechanisms is needed so as to implement an ECO2  (Ecological and Economical) vehicle design paradigm. Moreover, the multifunctional design paradigm that drives aeronautical and vehicle engineering is an ever-growing demand of smart materials and structures, able to fulfil multiple requirements in an effective way. The understanding of certain phenomena intrinsic to the introduction of novel materials has found certain limits due to the complexity of the models needed. This work presents as a first step an assessment of the causes and consequences of the vehicle exponential market growth based on the analysis of the planned obsolescence within. Furthermore, a method for the acoustic response analysis of multilayered structures including anisotropic poroelastic materials is introduced. The methodology consists in a plane wave approach as a base for introducing the complex mechanic and acoustic equations governing anisotropic homogeneous media, e.g. open-celled foams, into an alternative mathematical tool manipulating physical wave amplitudes propagation within the studied media. In addition, this method is coupled to a power partitioning and energetic assessment tool so as to understand the phenomena present in complex multilayered designs. / <p>QC 20150323</p>

Page generated in 0.1323 seconds